Data Mining for Business Analytics

Data Mining for Business Analytics
Author: Galit Shmueli,Peter C. Bruce,Mia L. Stephens,Nitin R. Patel
Publsiher: John Wiley & Sons
Total Pages: 560
Release: 2016-05-11
Genre: Mathematics
ISBN: 9781118877524

Download Data Mining for Business Analytics Book in PDF, Epub and Kindle

Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® presents an applied and interactive approach to data mining. Featuring hands-on applications with JMP Pro®, a statistical package from the SAS Institute, the book uses engaging, real-world examples to build a theoretical and practical understanding of key data mining methods, especially predictive models for classification and prediction. Topics include data visualization, dimension reduction techniques, clustering, linear and logistic regression, classification and regression trees, discriminant analysis, naive Bayes, neural networks, uplift modeling, ensemble models, and time series forecasting. Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® also includes: Detailed summaries that supply an outline of key topics at the beginning of each chapter End-of-chapter examples and exercises that allow readers to expand their comprehension of the presented material Data-rich case studies to illustrate various applications of data mining techniques A companion website with over two dozen data sets, exercises and case study solutions, and slides for instructors www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® is an excellent textbook for advanced undergraduate and graduate-level courses on data mining, predictive analytics, and business analytics. The book is also a one-of-a-kind resource for data scientists, analysts, researchers, and practitioners working with analytics in the fields of management, finance, marketing, information technology, healthcare, education, and any other data-rich field.

Data Mining and Business Analytics with R

Data Mining and Business Analytics with R
Author: Johannes Ledolter
Publsiher: John Wiley & Sons
Total Pages: 368
Release: 2013-05-28
Genre: Computers
ISBN: 9781118572153

Download Data Mining and Business Analytics with R Book in PDF, Epub and Kindle

Collecting, analyzing, and extracting valuable information froma large amount of data requires easily accessible, robust,computational and analytical tools. Data Mining and BusinessAnalytics with R utilizes the open source software R for theanalysis, exploration, and simplification of large high-dimensionaldata sets. As a result, readers are provided with the neededguidance to model and interpret complicated data and become adeptat building powerful models for prediction and classification. Highlighting both underlying concepts and practicalcomputational skills, Data Mining and Business Analytics withR begins with coverage of standard linear regression and theimportance of parsimony in statistical modeling. The book includesimportant topics such as penalty-based variable selection (LASSO);logistic regression; regression and classification trees;clustering; principal components and partial least squares; and theanalysis of text and network data. In addition, the bookpresents: • A thorough discussion and extensive demonstration of thetheory behind the most useful data mining tools • Illustrations of how to use the outlined concepts inreal-world situations • Readily available additional data sets and related Rcode allowing readers to apply their own analyses to the discussedmaterials • Numerous exercises to help readers with computing skillsand deepen their understanding of the material Data Mining and Business Analytics with R is an excellentgraduate-level textbook for courses on data mining and businessanalytics. The book is also a valuable reference for practitionerswho collect and analyze data in the fields of finance, operationsmanagement, marketing, and the information sciences.

Data Mining for Business Analytics

Data Mining for Business Analytics
Author: Galit Shmueli,Peter C. Bruce,Nitin R. Patel
Publsiher: John Wiley & Sons
Total Pages: 560
Release: 2016-04-18
Genre: Mathematics
ISBN: 9781118729274

Download Data Mining for Business Analytics Book in PDF, Epub and Kindle

An applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition "…full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing."– Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." – ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.

Customer and Business Analytics

Customer and Business Analytics
Author: Daniel S. Putler,Robert E. Krider
Publsiher: CRC Press
Total Pages: 315
Release: 2012-05-07
Genre: Business & Economics
ISBN: 9781466503984

Download Customer and Business Analytics Book in PDF, Epub and Kindle

Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the tex

Data Mining for Business Intelligence

Data Mining for Business Intelligence
Author: Galit Shmueli,Nitin R. Patel,Peter C. Bruce
Publsiher: John Wiley & Sons
Total Pages: 300
Release: 2006-12-11
Genre: Mathematics
ISBN: 9780470084854

Download Data Mining for Business Intelligence Book in PDF, Epub and Kindle

Learn how to develop models for classification, prediction, and customer segmentation with the help of Data Mining for Business Intelligence In today's world, businesses are becoming more capable of accessing their ideal consumers, and an understanding of data mining contributes to this success. Data Mining for Business Intelligence, which was developed from a course taught at the Massachusetts Institute of Technology's Sloan School of Management, and the University of Maryland's Smith School of Business, uses real data and actual cases to illustrate the applicability of data mining intelligence to the development of successful business models. Featuring XLMiner, the Microsoft Office Excel add-in, this book allows readers to follow along and implement algorithms at their own speed, with a minimal learning curve. In addition, students and practitioners of data mining techniques are presented with hands-on, business-oriented applications. An abundant amount of exercises and examples are provided to motivate learning and understanding. Data Mining for Business Intelligence: Provides both a theoretical and practical understanding of the key methods of classification, prediction, reduction, exploration, and affinity analysis Features a business decision-making context for these key methods Illustrates the application and interpretation of these methods using real business cases and data This book helps readers understand the beneficial relationship that can be established between data mining and smart business practices, and is an excellent learning tool for creating valuable strategies and making wiser business decisions.

Business Intelligence and Data Mining

Business Intelligence and Data Mining
Author: Anil Maheshwari
Publsiher: Business Expert Press
Total Pages: 162
Release: 2014-12-31
Genre: Business & Economics
ISBN: 9781631571213

Download Business Intelligence and Data Mining Book in PDF, Epub and Kindle

“This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.

Integration Challenges for Analytics Business Intelligence and Data Mining

Integration Challenges for Analytics  Business Intelligence  and Data Mining
Author: Azevedo, Ana,Santos, Manuel Filipe
Publsiher: IGI Global
Total Pages: 250
Release: 2020-12-11
Genre: Computers
ISBN: 9781799857839

Download Integration Challenges for Analytics Business Intelligence and Data Mining Book in PDF, Epub and Kindle

As technology continues to advance, it is critical for businesses to implement systems that can support the transformation of data into information that is crucial for the success of the company. Without the integration of data (both structured and unstructured) mining in business intelligence systems, invaluable knowledge is lost. However, there are currently many different models and approaches that must be explored to determine the best method of integration. Integration Challenges for Analytics, Business Intelligence, and Data Mining is a relevant academic book that provides empirical research findings on increasing the understanding of using data mining in the context of business intelligence and analytics systems. Covering topics that include big data, artificial intelligence, and decision making, this book is an ideal reference source for professionals working in the areas of data mining, business intelligence, and analytics; data scientists; IT specialists; managers; researchers; academicians; practitioners; and graduate students.

Real World Data Mining

Real World Data Mining
Author: Dursun Delen
Publsiher: FT Press
Total Pages: 289
Release: 2014-12-16
Genre: Business & Economics
ISBN: 9780133551112

Download Real World Data Mining Book in PDF, Epub and Kindle

Use the latest data mining best practices to enable timely, actionable, evidence-based decision making throughout your organization! Real-World Data Mining demystifies current best practices, showing how to use data mining to uncover hidden patterns and correlations, and leverage these to improve all aspects of business performance. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, he provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: processes, methods, techniques, tools, and metrics; the role and management of data; text and web mining; sentiment analysis; and Big Data integration. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials. Real-World Data Mining will be valuable to professionals on analytics teams; professionals seeking certification in the field; and undergraduate or graduate students in any analytics program: concentrations, certificate-based, or degree-based.