Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch
Author: Jeremy Howard,Sylvain Gugger
Publsiher: O'Reilly Media
Total Pages: 624
Release: 2020-06-29
Genre: Computers
ISBN: 9781492045496

Download Deep Learning for Coders with fastai and PyTorch Book in PDF, Epub and Kindle

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch
Author: Jeremy Howard,Sylvain Gugger
Publsiher: "O'Reilly Media, Inc."
Total Pages: 624
Release: 2020-06-29
Genre: Computers
ISBN: 9781492045472

Download Deep Learning for Coders with fastai and PyTorch Book in PDF, Epub and Kindle

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Deep Learning for Coders with Fastai PyTorch

Deep Learning for Coders with Fastai   PyTorch
Author: Jeremy Howard (Scientist),Sylvain Gugger
Publsiher: Unknown
Total Pages: 594
Release: 2021
Genre: Artificial intelligence
ISBN: 7564194545

Download Deep Learning for Coders with Fastai PyTorch Book in PDF, Epub and Kindle

Deep Learning with PyTorch

Deep Learning with PyTorch
Author: Luca Pietro Giovanni Antiga,Eli Stevens,Thomas Viehmann
Publsiher: Simon and Schuster
Total Pages: 518
Release: 2020-07-01
Genre: Computers
ISBN: 9781638354079

Download Deep Learning with PyTorch Book in PDF, Epub and Kindle

“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Programming PyTorch for Deep Learning

Programming PyTorch for Deep Learning
Author: Ian Pointer
Publsiher: O'Reilly Media
Total Pages: 220
Release: 2019-09-20
Genre: Computers
ISBN: 9781492045328

Download Programming PyTorch for Deep Learning Book in PDF, Epub and Kindle

Deep learning is changing everything. This machine-learning method has already surpassed traditional computer vision techniques, and the same is happening with NLP. If you're looking to bring deep learning into your domain, this practical book will bring you up to speed on key concepts using Facebook's PyTorch framework. Once author Ian Pointer helps you set up PyTorch on a cloud-based environment, you'll learn how use the framework to create neural architectures for performing operations on images, sound, text, and other types of data. By the end of the book, you'll be able to create neural networks and train them on multiple types of data. Learn how to deploy deep learning models to production Explore PyTorch use cases in companies other than Facebook Learn how to apply transfer learning to images Apply cutting-edge NLP techniques using a model trained on Wikipedia

Natural Language Processing with PyTorch

Natural Language Processing with PyTorch
Author: Delip Rao,Brian McMahan
Publsiher: O'Reilly Media
Total Pages: 256
Release: 2019-01-22
Genre: Computers
ISBN: 9781491978207

Download Natural Language Processing with PyTorch Book in PDF, Epub and Kindle

Natural Language Processing (NLP) provides boundless opportunities for solving problems in artificial intelligence, making products such as Amazon Alexa and Google Translate possible. If you’re a developer or data scientist new to NLP and deep learning, this practical guide shows you how to apply these methods using PyTorch, a Python-based deep learning library. Authors Delip Rao and Brian McMahon provide you with a solid grounding in NLP and deep learning algorithms and demonstrate how to use PyTorch to build applications involving rich representations of text specific to the problems you face. Each chapter includes several code examples and illustrations. Explore computational graphs and the supervised learning paradigm Master the basics of the PyTorch optimized tensor manipulation library Get an overview of traditional NLP concepts and methods Learn the basic ideas involved in building neural networks Use embeddings to represent words, sentences, documents, and other features Explore sequence prediction and generate sequence-to-sequence models Learn design patterns for building production NLP systems

Practical Natural Language Processing

Practical Natural Language Processing
Author: Sowmya Vajjala,Bodhisattwa Majumder,Anuj Gupta,Harshit Surana
Publsiher: O'Reilly Media
Total Pages: 455
Release: 2020-06-17
Genre: Computers
ISBN: 9781492054023

Download Practical Natural Language Processing Book in PDF, Epub and Kindle

Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective

Deep Learning with JavaScript

Deep Learning with JavaScript
Author: Stanley Bileschi,Eric Nielsen,Shanqing Cai
Publsiher: Simon and Schuster
Total Pages: 560
Release: 2020-01-24
Genre: Computers
ISBN: 9781638351542

Download Deep Learning with JavaScript Book in PDF, Epub and Kindle

Summary Deep learning has transformed the fields of computer vision, image processing, and natural language applications. Thanks to TensorFlow.js, now JavaScript developers can build deep learning apps without relying on Python or R. Deep Learning with JavaScript shows developers how they can bring DL technology to the web. Written by the main authors of the TensorFlow library, this new book provides fascinating use cases and in-depth instruction for deep learning apps in JavaScript in your browser or on Node. Foreword by Nikhil Thorat and Daniel Smilkov. About the technology Running deep learning applications in the browser or on Node-based backends opens up exciting possibilities for smart web applications. With the TensorFlow.js library, you build and train deep learning models with JavaScript. Offering uncompromising production-quality scalability, modularity, and responsiveness, TensorFlow.js really shines for its portability. Its models run anywhere JavaScript runs, pushing ML farther up the application stack. About the book In Deep Learning with JavaScript, you’ll learn to use TensorFlow.js to build deep learning models that run directly in the browser. This fast-paced book, written by Google engineers, is practical, engaging, and easy to follow. Through diverse examples featuring text analysis, speech processing, image recognition, and self-learning game AI, you’ll master all the basics of deep learning and explore advanced concepts, like retraining existing models for transfer learning and image generation. What's inside - Image and language processing in the browser - Tuning ML models with client-side data - Text and image creation with generative deep learning - Source code samples to test and modify About the reader For JavaScript programmers interested in deep learning. About the author Shanging Cai, Stanley Bileschi and Eric D. Nielsen are software engineers with experience on the Google Brain team, and were crucial to the development of the high-level API of TensorFlow.js. This book is based in part on the classic, Deep Learning with Python by François Chollet. TOC: PART 1 - MOTIVATION AND BASIC CONCEPTS 1 • Deep learning and JavaScript PART 2 - A GENTLE INTRODUCTION TO TENSORFLOW.JS 2 • Getting started: Simple linear regression in TensorFlow.js 3 • Adding nonlinearity: Beyond weighted sums 4 • Recognizing images and sounds using convnets 5 • Transfer learning: Reusing pretrained neural networks PART 3 - ADVANCED DEEP LEARNING WITH TENSORFLOW.JS 6 • Working with data 7 • Visualizing data and models 8 • Underfitting, overfitting, and the universal workflow of machine learning 9 • Deep learning for sequences and text 10 • Generative deep learning 11 • Basics of deep reinforcement learning PART 4 - SUMMARY AND CLOSING WORDS 12 • Testing, optimizing, and deploying models 13 • Summary, conclusions, and beyond