Graph Edge Coloring

Graph Edge Coloring
Author: Michael Stiebitz,Diego Scheide,Bjarne Toft,Lene M. Favrholdt
Publsiher: John Wiley & Sons
Total Pages: 344
Release: 2012-02-27
Genre: Mathematics
ISBN: 9781118205563

Download Graph Edge Coloring Book in PDF, Epub and Kindle

Features recent advances and new applications in graph edgecoloring Reviewing recent advances in the Edge Coloring Problem, GraphEdge Coloring: Vizing's Theorem and Goldberg's Conjectureprovides an overview of the current state of the science,explaining the interconnections among the results obtained fromimportant graph theory studies. The authors introduce many newimproved proofs of known results to identify and point to possiblesolutions for open problems in edge coloring. The book begins with an introduction to graph theory and theconcept of edge coloring. Subsequent chapters explore importanttopics such as: Use of Tashkinov trees to obtain an asymptotic positive solutionto Goldberg's conjecture Application of Vizing fans to obtain both known and newresults Kierstead paths as an alternative to Vizing fans Classification problem of simple graphs Generalized edge coloring in which a color may appear more thanonce at a vertex This book also features first-time English translations of twogroundbreaking papers written by Vadim Vizing on an estimate of thechromatic class of a p-graph and the critical graphs within a givenchromatic class. Written by leading experts who have reinvigorated research inthe field, Graph Edge Coloring is an excellent book formathematics, optimization, and computer science courses at thegraduate level. The book also serves as a valuable reference forresearchers interested in discrete mathematics, graph theory,operations research, theoretical computer science, andcombinatorial optimization.

Color Induced Graph Colorings

Color Induced Graph Colorings
Author: Ping Zhang
Publsiher: Springer
Total Pages: 118
Release: 2015-08-10
Genre: Mathematics
ISBN: 9783319203942

Download Color Induced Graph Colorings Book in PDF, Epub and Kindle

A comprehensive treatment of color-induced graph colorings is presented in this book, emphasizing vertex colorings induced by edge colorings. The coloring concepts described in this book depend not only on the property required of the initial edge coloring and the kind of objects serving as colors, but also on the property demanded of the vertex coloring produced. For each edge coloring introduced, background for the concept is provided, followed by a presentation of results and open questions dealing with this topic. While the edge colorings discussed can be either proper or unrestricted, the resulting vertex colorings are either proper colorings or rainbow colorings. This gives rise to a discussion of irregular colorings, strong colorings, modular colorings, edge-graceful colorings, twin edge colorings and binomial colorings. Since many of the concepts described in this book are relatively recent, the audience for this book is primarily mathematicians interested in learning some new areas of graph colorings as well as researchers and graduate students in the mathematics community, especially the graph theory community.

Graph Colorings

Graph Colorings
Author: Marek Kubale
Publsiher: American Mathematical Soc.
Total Pages: 224
Release: 2004
Genre: Graph coloring
ISBN: 9780821834589

Download Graph Colorings Book in PDF, Epub and Kindle

Graph coloring is one of the oldest and best-known problems of graph theory. As people grew accustomed to applying the tools of graph theory to the solutions of real-world technological and organizational problems, new chromatic models emerged as a natural way of tackling many practical situations. Statistics show that graph coloring is one of the central issues in the collection of several hundred classical combinatorial problems. This book is devoted to problems in graph coloring,which can be viewed as one area of discrete optimization. Chapters are dedicated to various models and are largely independent of one another. In each chapter, the author highlights algorithmic aspects of the presented models, i.e., the construction of polynomial-time algorithms for graph coloring.This is an expanded and updated translation of the prizewinning book originally published in Polish, Optymalizacja dyskretna. Modele i metody kolorowania grafow. It is suitable for graduate students and researchers interested in graph theory.

Edge Colorings of Graphs and Their Applications

Edge Colorings of Graphs and Their Applications
Author: Daniel Johnston
Publsiher: Unknown
Total Pages: 150
Release: 2015
Genre: Electronic Book
ISBN: OCLC:922053083

Download Edge Colorings of Graphs and Their Applications Book in PDF, Epub and Kindle

Edge colorings have appeared in a variety of contexts in graph theory. In this work, we study problems occurring in three separate settings of edge colorings. For more than a quarter century, edge colorings have been studied that induce vertex colorings in some manner. One research topic we investigate concerns edge colorings belonging to this class of problems. By a twin edge coloring of a graph G is meant a proper edge coloring of G whose colors come from the integers modulo k that induce a proper vertex coloring in which the color of a vertex is the sum of the colors of its incident edges. The minimum k for which G has a twin edge coloring is the twin chromatic index of G. Several results on this concept have been obtained as well as a conjecture. A red-blue coloring of a graph G is an edge coloring of G in which every edge is colored red or blue. The Ramsey number of F and H is the smallest positive integer n such that every red-blue coloring of the complete graph of order n results in a red F or a blue H. The related concept of bipartite Ramsey number has been defined and studied when F and H are bipartite. We introduce a new class of Ramsey numbers which extend these two well-studied concepts in the area of extremal graph theory and present results and problems on these new concepts. Let F be a graph of size 2 or more having a red-blue coloring in which there is at least one edge of each color. One blue edge is designated as the root of F. For such an edge colored graph F, an F coloring of a graph G is a red-blue coloring of G in which every blue edge is the root of some copy of F in G. The F chromatic index of G is the minimum number of red edges in an F coloring of G. In this setting, we provide a bichromatic view of two well-known concepts in graph theory, namely matchings and domination, and present results and problems in this area of research.

Graph Coloring Problems

Graph Coloring Problems
Author: Tommy R. Jensen,Bjarne Toft
Publsiher: John Wiley & Sons
Total Pages: 320
Release: 2011-10-24
Genre: Mathematics
ISBN: 9781118030745

Download Graph Coloring Problems Book in PDF, Epub and Kindle

Contains a wealth of information previously scattered in research journals, conference proceedings and technical reports. Identifies more than 200 unsolved problems. Every problem is stated in a self-contained, extremely accessible format, followed by comments on its history, related results and literature. The book will stimulate research and help avoid efforts on solving already settled problems. Each chapter concludes with a comprehensive list of references which will lead readers to original sources, important contributions and other surveys.

Distributed Graph Coloring

Distributed Graph Coloring
Author: Leonid Barenboim,Michael Elkin
Publsiher: Morgan & Claypool Publishers
Total Pages: 173
Release: 2013-07-01
Genre: Computers
ISBN: 9781627050197

Download Distributed Graph Coloring Book in PDF, Epub and Kindle

The objective of our monograph is to cover the developments on the theoretical foundations of distributed symmetry breaking in the message-passing model. We hope that our monograph will stimulate further progress in this exciting area.

Chromatic Graph Theory

Chromatic Graph Theory
Author: Gary Chartrand,Ping Zhang
Publsiher: CRC Press
Total Pages: 503
Release: 2019-11-28
Genre: Mathematics
ISBN: 9780429798283

Download Chromatic Graph Theory Book in PDF, Epub and Kindle

With Chromatic Graph Theory, Second Edition, the authors present various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. Readers will see that the authors accomplished the primary goal of this textbook, which is to introduce graph theory with a coloring theme and to look at graph colorings in various ways. The textbook also covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings. Features of the Second Edition: The book can be used for a first course in graph theory as well as a graduate course The primary topic in the book is graph coloring The book begins with an introduction to graph theory so assumes no previous course The authors are the most widely-published team on graph theory Many new examples and exercises enhance the new edition

Graph Colouring and Applications

Graph Colouring and Applications
Author: Pierre Hansen,Odile Marcotte
Publsiher: American Mathematical Soc.
Total Pages: 168
Release: 1999
Genre: Cartes géographiques - Coloriage
ISBN: 0821819550

Download Graph Colouring and Applications Book in PDF, Epub and Kindle

This volume presents the proceedings of the CRM workshop on graph coloring and applications. The articles span a wide spectrum of topics related to graph coloring, including: list-colorings, total colorings, colorings and embeddings of graphs, chromatic polynomials, characteristic polynomials, chromatic scheduling, and graph coloring problems related to frequency assignment. Outstanding researchers in combinatorial optimization and graph theory contributed their work. A list of open problems is included.