Hands On Mathematics for Deep Learning

Hands On Mathematics for Deep Learning
Author: Jay Dawani
Publsiher: Packt Publishing Ltd
Total Pages: 347
Release: 2020-06-12
Genre: Computers
ISBN: 9781838641849

Download Hands On Mathematics for Deep Learning Book in PDF, Epub and Kindle

A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architectures Key FeaturesUnderstand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networksLearn the mathematical concepts needed to understand how deep learning models functionUse deep learning for solving problems related to vision, image, text, and sequence applicationsBook Description Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL. What you will learnUnderstand the key mathematical concepts for building neural network modelsDiscover core multivariable calculus conceptsImprove the performance of deep learning models using optimization techniquesCover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizerUnderstand computational graphs and their importance in DLExplore the backpropagation algorithm to reduce output errorCover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)Who this book is for This book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.

Hands On Mathematics for Deep Learning

Hands On Mathematics for Deep Learning
Author: Jay Dawani
Publsiher: Unknown
Total Pages: 364
Release: 2020-06-12
Genre: Computers
ISBN: 1838647295

Download Hands On Mathematics for Deep Learning Book in PDF, Epub and Kindle

The main aim of this book is to make the advanced mathematical background accessible to someone with a programming background. This book will equip the readers with not only deep learning architectures but the mathematics behind them. With this book, you will understand the relevant mathematics that goes behind building deep learning models.

Mathematics for Machine Learning

Mathematics for Machine Learning
Author: Marc Peter Deisenroth,A. Aldo Faisal,Cheng Soon Ong
Publsiher: Cambridge University Press
Total Pages: 391
Release: 2020-04-23
Genre: Computers
ISBN: 9781108470049

Download Mathematics for Machine Learning Book in PDF, Epub and Kindle

Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.

Hands On Deep Learning Algorithms with Python

Hands On Deep Learning Algorithms with Python
Author: Sudharsan Ravichandiran
Publsiher: Packt Publishing Ltd
Total Pages: 498
Release: 2019-07-25
Genre: Computers
ISBN: 9781789344516

Download Hands On Deep Learning Algorithms with Python Book in PDF, Epub and Kindle

Understand basic to advanced deep learning algorithms, the mathematical principles behind them, and their practical applications. Key FeaturesGet up-to-speed with building your own neural networks from scratch Gain insights into the mathematical principles behind deep learning algorithmsImplement popular deep learning algorithms such as CNNs, RNNs, and more using TensorFlowBook Description Deep learning is one of the most popular domains in the AI space, allowing you to develop multi-layered models of varying complexities. This book introduces you to popular deep learning algorithms—from basic to advanced—and shows you how to implement them from scratch using TensorFlow. Throughout the book, you will gain insights into each algorithm, the mathematical principles behind it, and how to implement it in the best possible manner. The book starts by explaining how you can build your own neural networks, followed by introducing you to TensorFlow, the powerful Python-based library for machine learning and deep learning. Moving on, you will get up to speed with gradient descent variants, such as NAG, AMSGrad, AdaDelta, Adam, and Nadam. The book will then provide you with insights into RNNs and LSTM and how to generate song lyrics with RNN. Next, you will master the math for convolutional and capsule networks, widely used for image recognition tasks. Then you learn how machines understand the semantics of words and documents using CBOW, skip-gram, and PV-DM. Afterward, you will explore various GANs, including InfoGAN and LSGAN, and autoencoders, such as contractive autoencoders and VAE. By the end of this book, you will be equipped with all the skills you need to implement deep learning in your own projects. What you will learnImplement basic-to-advanced deep learning algorithmsMaster the mathematics behind deep learning algorithmsBecome familiar with gradient descent and its variants, such as AMSGrad, AdaDelta, Adam, and NadamImplement recurrent networks, such as RNN, LSTM, GRU, and seq2seq modelsUnderstand how machines interpret images using CNN and capsule networksImplement different types of generative adversarial network, such as CGAN, CycleGAN, and StackGANExplore various types of autoencoder, such as Sparse autoencoders, DAE, CAE, and VAEWho this book is for If you are a machine learning engineer, data scientist, AI developer, or simply want to focus on neural networks and deep learning, this book is for you. Those who are completely new to deep learning, but have some experience in machine learning and Python programming, will also find the book very helpful.

Math for Deep Learning

Math for Deep Learning
Author: Ronald T. Kneusel
Publsiher: No Starch Press
Total Pages: 346
Release: 2021-12-07
Genre: Computers
ISBN: 9781718501904

Download Math for Deep Learning Book in PDF, Epub and Kindle

Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits. With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.

T Minus AI

T Minus AI
Author: Michael Kanaan
Publsiher: BenBella Books
Total Pages: 249
Release: 2020-08-25
Genre: Science
ISBN: 9781950665136

Download T Minus AI Book in PDF, Epub and Kindle

Late in 2017, the global significance of the conversation about artificial intelligence (AI) changed forever. China put the world on alert when it released a plan to dominate all aspects of AI across the planet. Only weeks later, Vladimir Putin raised a Russian red flag in response by declaring AI the future for all humankind, and proclaiming that, "Whoever becomes the leader in this sphere will become the ruler of the world." The race was on. Consistent with their unique national agendas, countries throughout the world began plotting their paths and hurrying their pace. Now, not long after, the race has become a sprint. Despite everything at stake, to most of us AI remains shrouded by a cloud of mystery and misunderstanding. Hidden behind complicated and technical jargon and confused by fantastical depictions of science fiction, the modern realities of AI and its profound implications are hard to decipher, but crucial to recognize. In T-Minus AI: Humanity's Countdown to Artificial Intelligence and the New Pursuit of Global Power, author Michael Kanaan explains AI from a human-oriented perspective we can all finally understand. A recognized national expert and the U.S. Air Force's first Chairperson for Artificial Intelligence, Kanaan weaves a compelling new view on our history of innovation and technology to masterfully explain what each of us should know about modern computing, AI, and machine learning. Kanaan also dives into the global implications of AI by illuminating the cultural and national vulnerabilities already exposed and the pressing issues now squarely on the table. AI has already become China's all-purpose tool to impose its authoritarian influence around the world. Russia, playing catch up, is weaponizing AI through its military systems and now infamous, aggressive efforts to disrupt democracy by whatever disinformation means possible. America and like-minded nations are awakening to these new realities—and the paths they're electing to follow echo loudly the political foundations and, in most cases, the moral imperatives upon which they were formed. As we march toward a future far different than ever imagined, T-Minus AI is fascinating and crucially well-timed. It leaves the fiction behind, paints the alarming implications of AI for what they actually are, and calls for unified action to protect fundamental human rights and dignities for all.

Machine Learning

Machine Learning
Author: Paul Wilmott
Publsiher: Unknown
Total Pages: 242
Release: 2019-05-20
Genre: Electronic Book
ISBN: 1916081606

Download Machine Learning Book in PDF, Epub and Kindle

Machine Learning: An Applied Mathematics Introduction covers the essential mathematics behind all of the following topics - K Nearest Neighbours; K Means Clustering; Naïve Bayes Classifier; Regression Methods; Support Vector Machines; Self-Organizing Maps; Decision Trees; Neural Networks; Reinforcement Learning

Math and Architectures of Deep Learning

Math and Architectures of Deep Learning
Author: Krishnendu Chaudhury
Publsiher: Simon and Schuster
Total Pages: 0
Release: 2024-05-21
Genre: Computers
ISBN: 9781638350804

Download Math and Architectures of Deep Learning Book in PDF, Epub and Kindle

Shine a spotlight into the deep learning “black box”. This comprehensive and detailed guide reveals the mathematical and architectural concepts behind deep learning models, so you can customize, maintain, and explain them more effectively. Inside Math and Architectures of Deep Learning you will find: Math, theory, and programming principles side by side Linear algebra, vector calculus and multivariate statistics for deep learning The structure of neural networks Implementing deep learning architectures with Python and PyTorch Troubleshooting underperforming models Working code samples in downloadable Jupyter notebooks The mathematical paradigms behind deep learning models typically begin as hard-to-read academic papers that leave engineers in the dark about how those models actually function. Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. Written by deep learning expert Krishnendu Chaudhury, you’ll peer inside the “black box” to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Foreword by Prith Banerjee. About the technology Discover what’s going on inside the black box! To work with deep learning you’ll have to choose the right model, train it, preprocess your data, evaluate performance and accuracy, and deal with uncertainty and variability in the outputs of a deployed solution. This book takes you systematically through the core mathematical concepts you’ll need as a working data scientist: vector calculus, linear algebra, and Bayesian inference, all from a deep learning perspective. About the book Math and Architectures of Deep Learning teaches the math, theory, and programming principles of deep learning models laid out side by side, and then puts them into practice with well-annotated Python code. You’ll progress from algebra, calculus, and statistics all the way to state-of-the-art DL architectures taken from the latest research. What's inside The core design principles of neural networks Implementing deep learning with Python and PyTorch Regularizing and optimizing underperforming models About the reader Readers need to know Python and the basics of algebra and calculus. About the author Krishnendu Chaudhury is co-founder and CTO of the AI startup Drishti Technologies. He previously spent a decade each at Google and Adobe. Table of Contents 1 An overview of machine learning and deep learning 2 Vectors, matrices, and tensors in machine learning 3 Classifiers and vector calculus 4 Linear algebraic tools in machine learning 5 Probability distributions in machine learning 6 Bayesian tools for machine learning 7 Function approximation: How neural networks model the world 8 Training neural networks: Forward propagation and backpropagation 9 Loss, optimization, and regularization 10 Convolutions in neural networks 11 Neural networks for image classification and object detection 12 Manifolds, homeomorphism, and neural networks 13 Fully Bayes model parameter estimation 14 Latent space and generative modeling, autoencoders, and variational autoencoders A Appendix