Polymer Electrolyte Fuel Cell Degradation

Polymer Electrolyte Fuel Cell Degradation
Author: Matthew M. Mench,Emin Caglan Kumbur,T. Nejat Veziro glu
Publsiher: Academic Press
Total Pages: 474
Release: 2012
Genre: Technology & Engineering
ISBN: 9780123869364

Download Polymer Electrolyte Fuel Cell Degradation Book in PDF, Epub and Kindle

For full market implementation of PEM fuel cells to become a reality, two main limiting technical issues must be overcome- cost and durability. This cutting-edge volume directly addresses the state-of-the-art advances in durability within every fuel cell stack component. [...] chapters on durability in the individual fuel cell components -- membranes, electrodes, diffusion media, and bipolar plates -- highlight specific degradation modes and mitigation strategies. The book also includes chapters which synthesize the component-related failure modes to examine experimental diagnostics, computational modeling, and laboratory protocol"--Back cover.

Polymer Electrolyte Fuel Cell Durability

Polymer Electrolyte Fuel Cell Durability
Author: Felix N. Büchi,Minoru Inaba,Thomas J. Schmidt
Publsiher: Springer Science & Business Media
Total Pages: 489
Release: 2009-02-08
Genre: Science
ISBN: 9780387855363

Download Polymer Electrolyte Fuel Cell Durability Book in PDF, Epub and Kindle

This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on–off and/or high power–low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.

Polymer Electrolyte Fuel Cells

Polymer Electrolyte Fuel Cells
Author: Michael Eikerling,Andrei Kulikovsky
Publsiher: CRC Press
Total Pages: 582
Release: 2014-09-23
Genre: Science
ISBN: 9781439854068

Download Polymer Electrolyte Fuel Cells Book in PDF, Epub and Kindle

The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the operation of polymer electrolyte fuel cells. The book then presents the scientific challenges in fuel cell research as a systematic account of distinct components, length scales, physicochemical processes, and scientific disciplines. The main part of the book focuses on theory and modeling. Theoretical tools and approaches, applied to fuel cell research, are presented in a self-contained manner. Chapters are arranged by different fuel cell materials and components, and sections advance through the hierarchy of scales, starting from molecular-level processes in proton-conducting media or electrocatalytic systems and ending with performance issues at the device level, including electrochemical performance, water management, durability, and analysis of failure mechanisms. Throughout, the book gives numerous examples of formidable scientific challenges as well as of tools to facilitate materials design and development of diagnostic methods. It reveals reserves for performance improvements and uncovers misapprehensions in scientific understanding that have misled or may continue to mislead technological development. An indispensable resource for scientifically minded and practically oriented researchers, this book helps industry leaders to appreciate the contributions of fundamental research, and leaders of fundamental research to appreciate the needs of industry.

Polymer Electrolyte Fuel Cells

Polymer Electrolyte Fuel Cells
Author: Alejandro A. Franco
Publsiher: CRC Press
Total Pages: 616
Release: 2016-04-19
Genre: Science
ISBN: 9789814364409

Download Polymer Electrolyte Fuel Cells Book in PDF, Epub and Kindle

This book focuses on the recent research progress on the fundamental understanding of the materials degradation phenomena in PEFC, for automotive applications. On a multidisciplinary basis, through contributions of internationally recognized researchers in the field, this book provides a complete critical review on crucial scientific topics related to PEFC materials degradation, and ensures a strong balance between experimental and theoretical analysis and preparation techniques with several practical applications for both the research and the industrial communities.

High Temperature Polymer Electrolyte Membrane Fuel Cells

High Temperature Polymer Electrolyte Membrane Fuel Cells
Author: Qingfeng Li,David Aili,Hans Aage Hjuler,Jens Oluf Jensen
Publsiher: Springer
Total Pages: 545
Release: 2015-10-15
Genre: Technology & Engineering
ISBN: 9783319170824

Download High Temperature Polymer Electrolyte Membrane Fuel Cells Book in PDF, Epub and Kindle

This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology
Author: Christoph Hartnig,Christina Roth
Publsiher: Woodhead Pub Limited
Total Pages: 516
Release: 2012
Genre: Science
ISBN: 184569774X

Download Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology Book in PDF, Epub and Kindle

A comprehensive review of of PEMFCs and DMFCs in two volumes, discussing methods for fuel cell characterization, for reaction kinetics and processes, water and fuel management, and local performance.

Advances in Electrochemical Science and Engineering

Advances in Electrochemical Science and Engineering
Author: Anonim
Publsiher: John Wiley & Sons
Total Pages: 429
Release: 2008-07-11
Genre: Science
ISBN: 9783527616886

Download Advances in Electrochemical Science and Engineering Book in PDF, Epub and Kindle

This series, formerly edited by Heinz Gerischer and Charls V. Tobias, now edited by Richard C. Alkire and Dieter M. Kolb, has been warmly welcomed by scientists world-wide which is reflected in the reviews of the previous volumes: "This is an essential book for researchers in electrochemistry; it covers areas of both fundamental and practical importance, with reviews of high quality. The material is very well presented and the choice of topics reflects a balanced editorial policy that is welcomed." —The Analyst "All the contributions in this volume are well up to the standard of this excellent series and will be of great value to electrochemists.... The editors again deserve to be congratulated on this fine collection of reviews." —Journal of Electroanalytical Chemistry and Interfacial Chemistry "...competently and clearly written." —Berichte der Bunsen- Gesellschaft für Physikalische Chemie

Polymer Membranes for Fuel Cells

Polymer Membranes for Fuel Cells
Author: Javaid Zaidi,Takeshi Matsuura
Publsiher: Springer Science & Business Media
Total Pages: 550
Release: 2010-07-15
Genre: Science
ISBN: 9780387735320

Download Polymer Membranes for Fuel Cells Book in PDF, Epub and Kindle

From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.