Solar Energy Harvesting Conversion And Storage
Download Solar Energy Harvesting Conversion And Storage full books in PDF, epub, and Kindle. Read online free Solar Energy Harvesting Conversion And Storage ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Solar Energy Harvesting Conversion and Storage
Author | : Mohammad Khalid,Rashmi Walvekar,Hitesh Panchal,Mahesh Vaka |
Publsiher | : Elsevier |
Total Pages | : 411 |
Release | : 2023-04-29 |
Genre | : Technology & Engineering |
ISBN | : 9780323908221 |
Download Solar Energy Harvesting Conversion and Storage Book in PDF, Epub and Kindle
Solar Energy Harvesting, Conversion, and Storage: Materials, Technologies, and Applications focuses on the current state of solar energy and the recent advancements in nanomaterials for different technologies, from harnessing energy to storage. The book covers different aspects of advanced nanomaterials for solar energy, rapid developments in solar thermal and hot water systems, and PV and CSP technologies. In addition, sections cover storing harnessed solar/heat energy using different available energy storage technologies, including phase change materials (PCMs), batteries, and supercapacitors. Various applications such as agriculture and aquaculture, desalination, domestic appliances, and transport are also explored. - Provides an overview of solar energy harvesting technologies, energy storage technologies, and the role of advanced nanomaterials in solar energy - Explores applications of technology in the fields of agriculture, aquaculture, desalination and transport - Includes discussion of current policies, strategies and socioeconomic analysis and challenges
Energy Harvesting
Author | : Alireza Khaligh,Omer C. Onar |
Publsiher | : CRC Press |
Total Pages | : 529 |
Release | : 2017-12-19 |
Genre | : Science |
ISBN | : 9781351834025 |
Download Energy Harvesting Book in PDF, Epub and Kindle
Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.
Thin Films for Energy Harvesting Conversion and Storage
Author | : Zhong Chen,Yuxin Tang,Xin Zhao |
Publsiher | : MDPI |
Total Pages | : 174 |
Release | : 2019-11-07 |
Genre | : Science |
ISBN | : 9783039217243 |
Download Thin Films for Energy Harvesting Conversion and Storage Book in PDF, Epub and Kindle
Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research findings. This thematic topic undoubtedly represents an extremely important technological direction, covering materials processing, characterization, simulation, and performance evaluation of thin films used in energy harvesting, conversion, and storage.
Materials in Energy Conversion Harvesting and Storage
Author | : Kathy Lu |
Publsiher | : John Wiley & Sons |
Total Pages | : 625 |
Release | : 2014-08-07 |
Genre | : Technology & Engineering |
ISBN | : 9781118892381 |
Download Materials in Energy Conversion Harvesting and Storage Book in PDF, Epub and Kindle
First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy and demonstrates why energy materials are as critical and far-reaching as energy itself. Each chapter starts out by explaining the role of a specific energy process in today’s energy landscape, followed by explanation of the fundamental energy conversion, harvesting, and storage processes. Well-researched and coherently written, Materials in Energy Conversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of different energy sources Energy production processes involving material uses and performance requirements in fossil, nuclear, solar, bio, wind, hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogen storage) and materials needs Throughout the book, illustrations and images clarify and simplify core concepts, techniques, and processes. References at the end of each chapter serve as a gateway to the primary literature in the field. All chapters are self-contained units, enabling instructors to easily adapt this book for coursework. This book is suitable for students and professors in science and engineering who look to obtain comprehensive understanding of different energy processes and materials issues. In setting forth the latest advances and new frontiers of research, experienced materials researchers and engineers can utilize it as a comprehensive energy material reference book.
Materials in Energy Conversion Harvesting and Storage
Author | : Kathy Lu |
Publsiher | : John Wiley & Sons |
Total Pages | : 485 |
Release | : 2014-09-22 |
Genre | : Technology & Engineering |
ISBN | : 9781118889107 |
Download Materials in Energy Conversion Harvesting and Storage Book in PDF, Epub and Kindle
First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy and demonstrates why energy materials are as critical and far-reaching as energy itself. Each chapter starts out by explaining the role of a specific energy process in today’s energy landscape, followed by explanation of the fundamental energy conversion, harvesting, and storage processes. Well-researched and coherently written, Materials in Energy Conversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of different energy sources Energy production processes involving material uses and performance requirements in fossil, nuclear, solar, bio, wind, hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogen storage) and materials needs Throughout the book, illustrations and images clarify and simplify core concepts, techniques, and processes. References at the end of each chapter serve as a gateway to the primary literature in the field. All chapters are self-contained units, enabling instructors to easily adapt this book for coursework. This book is suitable for students and professors in science and engineering who look to obtain comprehensive understanding of different energy processes and materials issues. In setting forth the latest advances and new frontiers of research, experienced materials researchers and engineers can utilize it as a comprehensive energy material reference book.
Organic electronic devices for solar energy conversion and storage
Author | : Yingzhi Jin |
Publsiher | : Linköping University Electronic Press |
Total Pages | : 72 |
Release | : 2020-08-19 |
Genre | : Electronic books |
ISBN | : 9789179298258 |
Download Organic electronic devices for solar energy conversion and storage Book in PDF, Epub and Kindle
This thesis focuses on two types of organic electronic devices: organic photovoltaic (OPV) devices for solar energy conversion, and photo-capacitors for energy storage. OPVs have been under the focus of research for decades as an effective technique to convert solar energy to electricity. So far, the efficiency of bulk heterojunction OPV consisting donor and acceptor materials is approaching to 18% with non-fullerene acceptor (NFA), which make it close to commercialization. The process of charge generation and recombination are two competing processes in OPVs, since their requirements for the active layer morphology are contradictory. Large donor/acceptor interfaces facilitate charge generation but hinder the transporting pathways for charge transportation. The simultaneously enhanced charge generation and transportation are achieved by using the ternary strategy in my first paper. The fully mixed donors and NFAs are beneficial for the charge generation and fullerene is introduced as an extra electron transport channel. The hierarchical morphology of the blend film is confirmed by the TEM results. The voltage loss analyses indicate that the hierarchical morphology could suppress unfavorable charge transfer state and non-radiative recombination loss. In my second paper, efficient charge generation with low voltage loss are achieved in the solar cells by rational designing a series of NFAs. The detailed voltage losses are discussed in these binary systems, revealing the critical relationship between radiative efficiency and device performance. To harvest photocurrent in OPVs, long lifetime triplet excitons are highly expected to be good candidates. The potential of triplet materials in OPVs has been explored since 1970s. However, the performance of the triplet materials-based OPVs is far behind. The voltage loss in triplet OPVs is intensively studied in my third work. A higher open circuit voltage (0.88 V) is observed for Ir(FOtbpa)3-based devices than those of Ir(Ftbpa)3 (0.80 V) despite a lower charge transfer state energy. To understand above result, the voltage losses through radiative and non-radiative recombination pathways in two devices are quantitively investigated, which indicate a reduced non-radiative recombination loss in the Ir(FOtbpa)3-based devices. The fluctuation of sun irradiation resulting the unstable output power of solar cells. Therefore, it is important to store electricity of solar cells for later use. Integrated photo-capacitor (IPC), combining a solar cell and a super-capacitor by sharing one common electrode, is able to simultaneously realize the energy harvesting and storage. Building upon this advantage, IPC devices received tremendous research attention. In my fourth and last papers, we introduced super-capacitors to construct IPC devices with OPV device or modules. A free standing thick- PEDOT:PSS film is successfully integrated into an all solution-processed IPC device as the common electrode. Resulting devices demonstrate good performance and outstanding stability. With solar PV modules, a higher voltage can be generated and stored by asymmetric supercapacitors, which could be used as a portable power unit.
Energy Conversion and Green Energy Storage
Author | : Amit Soni,Dharmendra Tripathi,Jagrati Sahariya,Kamal Nayan Sharma |
Publsiher | : CRC Press |
Total Pages | : 237 |
Release | : 2022-08-30 |
Genre | : Technology & Engineering |
ISBN | : 9781000625295 |
Download Energy Conversion and Green Energy Storage Book in PDF, Epub and Kindle
Energy Conversion and Green Energy Storage presents recent developments in renewable energy conversion and green energy storage. Covering technical expansions in renewable energy and applications, energy storage, and solar photovoltaics, the book features chapters written by global experts in the field. Providing insights related to various forms of renewable energy, the book discusses developments in solar photovoltaic applications. The book also includes simulation codes and programs, such as Wien2k code, VASP code, and MATLAB®. The book serves as a useful reference for researchers, graduate students, and engineers in the field of energy.
Integrated Solar Energy Harvesting and Storage Devices
Author | : Mohammad Ali Mahmoudzadeh Ahmadi Nejad |
Publsiher | : Unknown |
Total Pages | : 135 |
Release | : 2015 |
Genre | : Electronic Book |
ISBN | : OCLC:1032935767 |
Download Integrated Solar Energy Harvesting and Storage Devices Book in PDF, Epub and Kindle