The Hundred page Machine Learning Book

The Hundred page Machine Learning Book
Author: Andriy Burkov
Publsiher: Unknown
Total Pages: 141
Release: 2019
Genre: Machine learning
ISBN: 199957950X

Download The Hundred page Machine Learning Book Book in PDF, Epub and Kindle

Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue.

The Hundred page Machine Learning Book

The Hundred page Machine Learning Book
Author: Andriy Burkov
Publsiher: Unknown
Total Pages: 160
Release: 2019-01-11
Genre: Machine learning
ISBN: 1999579518

Download The Hundred page Machine Learning Book Book in PDF, Epub and Kindle

Endorsed by top AI authors, academics and industry leaders, The Hundred-Page Machine Learning Book is the number one bestseller on Amazon and the most recommended book for starters and experienced professionals alike.

The Hundred Page Machine Learning Book

The Hundred Page Machine Learning Book
Author: Anonim
Publsiher: Unknown
Total Pages: 0
Release: 2019
Genre: Electronic Book
ISBN: 1777005477

Download The Hundred Page Machine Learning Book Book in PDF, Epub and Kindle

Machine Learning Engineering

Machine Learning Engineering
Author: Andriy Burkov
Publsiher: True Positive Incorporated
Total Pages: 302
Release: 2020-09-08
Genre: Electronic Book
ISBN: 1777005469

Download Machine Learning Engineering Book in PDF, Epub and Kindle

The most comprehensive book on the engineering aspects of building reliable AI systems. "If you intend to use machine learning to solve business problems at scale, I'm delighted you got your hands on this book." -Cassie Kozyrkov, Chief Decision Scientist at Google "Foundational work about the reality of building machine learning models in production." -Karolis Urbonas, Head of Machine Learning and Science at Amazon

Approaching Almost Any Machine Learning Problem

Approaching  Almost  Any Machine Learning Problem
Author: Abhishek Thakur
Publsiher: Abhishek Thakur
Total Pages: 300
Release: 2020-07-04
Genre: Computers
ISBN: 9788269211504

Download Approaching Almost Any Machine Learning Problem Book in PDF, Epub and Kindle

This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub

Machine Learning in Action

Machine Learning in Action
Author: Peter Harrington
Publsiher: Simon and Schuster
Total Pages: 384
Release: 2012-04-03
Genre: Computers
ISBN: 9781638352457

Download Machine Learning in Action Book in PDF, Epub and Kindle

Summary Machine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification. About the Book A machine is said to learn when its performance improves with experience. Learning requires algorithms and programs that capture data and ferret out the interestingor useful patterns. Once the specialized domain of analysts and mathematicians, machine learning is becoming a skill needed by many. Machine Learning in Action is a clearly written tutorial for developers. It avoids academic language and takes you straight to the techniques you'll use in your day-to-day work. Many (Python) examples present the core algorithms of statistical data processing, data analysis, and data visualization in code you can reuse. You'll understand the concepts and how they fit in with tactical tasks like classification, forecasting, recommendations, and higher-level features like summarization and simplification. Readers need no prior experience with machine learning or statistical processing. Familiarity with Python is helpful. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's Inside A no-nonsense introduction Examples showing common ML tasks Everyday data analysis Implementing classic algorithms like Apriori and Adaboos Table of Contents PART 1 CLASSIFICATION Machine learning basics Classifying with k-Nearest Neighbors Splitting datasets one feature at a time: decision trees Classifying with probability theory: naïve Bayes Logistic regression Support vector machines Improving classification with the AdaBoost meta algorithm PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION Predicting numeric values: regression Tree-based regression PART 3 UNSUPERVISED LEARNING Grouping unlabeled items using k-means clustering Association analysis with the Apriori algorithm Efficiently finding frequent itemsets with FP-growth PART 4 ADDITIONAL TOOLS Using principal component analysis to simplify data Simplifying data with the singular value decomposition Big data and MapReduce

Programming Collective Intelligence

Programming Collective Intelligence
Author: Toby Segaran
Publsiher: "O'Reilly Media, Inc."
Total Pages: 362
Release: 2007-08-16
Genre: Computers
ISBN: 9780596550684

Download Programming Collective Intelligence Book in PDF, Epub and Kindle

Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details." -- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths." -- Tim Wolters, CTO, Collective Intellect

Bayesian Reasoning and Machine Learning

Bayesian Reasoning and Machine Learning
Author: David Barber
Publsiher: Cambridge University Press
Total Pages: 739
Release: 2012-02-02
Genre: Computers
ISBN: 9780521518147

Download Bayesian Reasoning and Machine Learning Book in PDF, Epub and Kindle

A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.