Thin Film Growth

Thin Film Growth
Author: Zexian Cao
Publsiher: Elsevier
Total Pages: 432
Release: 2011-07-18
Genre: Technology & Engineering
ISBN: 9780857093295

Download Thin Film Growth Book in PDF, Epub and Kindle

Thin film technology is used in many applications such as microelectronics, optics, hard and corrosion resistant coatings and micromechanics, and thin films form a uniquely versatile material base for the development of novel technologies within these industries. Thin film growth provides an important and up-to-date review of the theory and deposition techniques used in the formation of thin films. Part one focuses on the theory of thin film growth, with chapters covering nucleation and growth processes in thin films, phase-field modelling of thin film growth and surface roughness evolution. Part two covers some of the techniques used for thin film growth, including oblique angle deposition, reactive magnetron sputtering and epitaxial growth of graphene films on single crystal metal surfaces. This section also includes chapters on the properties of thin films, covering topics such as substrate plasticity and buckling of thin films, polarity control, nanostructure growth dynamics and network behaviour in thin films. With its distinguished editor and international team of contributors, Thin film growth is an essential reference for engineers in electronics, energy materials and mechanical engineering, as well as those with an academic research interest in the topic. Provides an important and up-to-date review of the theory and deposition techniques used in the formation of thin films Focusses on the theory and modelling of thin film growth, techniques and mechanisms used for thin film growth and properties of thin films An essential reference for engineers in electronics, energy materials and mechanical engineering

In Situ Characterization of Thin Film Growth

In Situ Characterization of Thin Film Growth
Author: Gertjan Koster,Guus Rijnders
Publsiher: Elsevier
Total Pages: 296
Release: 2011-10-05
Genre: Technology & Engineering
ISBN: 9780857094957

Download In Situ Characterization of Thin Film Growth Book in PDF, Epub and Kindle

Advanced techniques for characterizing thin film growth in situ help to develop improved understanding and faster diagnosis of issues with the process. In situ characterization of thin film growth reviews current and developing techniques for characterizing the growth of thin films, covering an important gap in research. Part one covers electron diffraction techniques for in situ study of thin film growth, including chapters on topics such as reflection high-energy electron diffraction (RHEED) and inelastic scattering techniques. Part two focuses on photoemission techniques, with chapters covering ultraviolet photoemission spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and in situ spectroscopic ellipsometry for characterization of thin film growth. Finally, part three discusses alternative in situ characterization techniques. Chapters focus on topics such as ion beam surface characterization, real time in situ surface monitoring of thin film growth, deposition vapour monitoring and the use of surface x-ray diffraction for studying epitaxial film growth. With its distinguished editors and international team of contributors, In situ characterization of thin film growth is a standard reference for materials scientists and engineers in the electronics and photonics industries, as well as all those with an academic research interest in this area. Chapters review electron diffraction techniques, including the methodology for observations and measurements Discusses the principles and applications of photoemission techniques Examines alternative in situ characterisation techniques

Thin Film Growth Techniques for Low Dimensional Structures

Thin Film Growth Techniques for Low Dimensional Structures
Author: R.F.C. Farrow,S.S.P. Parkin,P.J. Dobson,J.H. Neave,A.S. Arrott
Publsiher: Springer Science & Business Media
Total Pages: 548
Release: 2013-03-09
Genre: Technology & Engineering
ISBN: 9781468491456

Download Thin Film Growth Techniques for Low Dimensional Structures Book in PDF, Epub and Kindle

This work represents the account of a NATO Advanced Research Workshop on "Thin Film Growth Techniques for Low Dimensional Structures", held at the University of Sussex, Brighton, England from 15-19 Sept. 1986. The objective of the workshop was to review the problems of the growth and characterisation of thin semiconductor and metal layers. Recent advances in deposition techniques have made it possible to design new material which is based on ultra-thin layers and this is now posing challenges for scientists, technologists and engineers in the assessment and utilisation of such new material. Molecular beam epitaxy (MBE) has become well established as a method for growing thin single crystal layers of semiconductors. Until recently, MBE was confined to the growth of III-V compounds and alloys, but now it is being used for group IV semiconductors and II-VI compounds. Examples of such work are given in this volume. MBE has one major advantage over other crystal growth techniques in that the structure of the growing layer can be continuously monitored using reflection high energy electron diffraction (RHEED). This technique has offered a rare bonus in that the time dependent intensity variations of RHEED can be used to determine growth rates and alloy composition rather precisely. Indeed, a great deal of new information about the kinetics of crystal growth from the vapour phase is beginning to emerge.

Thin Film Physics And Devices Fundamental Mechanism Materials And Applications For Thin Films

Thin Film Physics And Devices  Fundamental Mechanism  Materials And Applications For Thin Films
Author: Jianguo Zhu,Xiaohong Zhu,Hong Liu,Jie Xing
Publsiher: World Scientific
Total Pages: 706
Release: 2021-06-18
Genre: Science
ISBN: 9789811224003

Download Thin Film Physics And Devices Fundamental Mechanism Materials And Applications For Thin Films Book in PDF, Epub and Kindle

Thin films have an extremely broad range of applications from electronics and optics to new materials and devices. Collaborative and multidisciplinary efforts from physicists, materials scientists, engineers and others have established and advanced a field with key pillars constituting (i) the synthesis and processing of thin films, (ii) the understanding of physical properties in relation to the nanometer scale, (iii) the design and fabrication of nano-devices or devices with thin film materials as building blocks, and (iv) the design and construction of novel tools for characterization of thin films.Against the backdrop of the increasingly interdisciplinary field, this book sets off to inform the basics of thin film physics and thin film devices. Readers are systematically introduced to the synthesis, processing and application of thin films; they will also study the formation of thin films, their structure and defects, and their various properties — mechanical, electrical, semiconducting, magnetic, and superconducting. With a primary focus on inorganic thin film materials, the book also ventures on organic materials such as self-assembled monolayers and Langmuir-Blodgett films.This book will be effective as a teaching or reference material in the various disciplines, ranging from Materials Science and Engineering, Electronic Science and Engineering, Electronic Materials and Components, Semiconductor Physics and Devices, to Applied Physics and more. The original Chinese publication has been instrumental in this purpose across many Chinese universities and colleges.

Surface Science

Surface Science
Author: K. Oura,V.G. Lifshits,A.A. Saranin,A.V. Zotov,M. Katayama
Publsiher: Springer Science & Business Media
Total Pages: 443
Release: 2013-03-14
Genre: Science
ISBN: 9783662051795

Download Surface Science Book in PDF, Epub and Kindle

The most important aspects of modern surface science are covered. All topics are presented in a concise and clear form accessible to a beginner. At the same time, the coverage is comprehensive and at a high technical level, with emphasis on the fundamental physical principles. Numerous examples, references, practice exercises, and problems complement this remarkably complete treatment, which will also serve as an excellent reference for researchers and practitioners. The textbook is idea for students in engineering and physical sciences.

Evolution of Thin Film Morphology

Evolution of Thin Film Morphology
Author: Matthew Pelliccione,Toh-Ming Lu
Publsiher: Springer Science & Business Media
Total Pages: 206
Release: 2008-01-29
Genre: Technology & Engineering
ISBN: 9780387751092

Download Evolution of Thin Film Morphology Book in PDF, Epub and Kindle

The focus of this book is on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition. It will benefit those working in any discipline that requires an understanding of thin film growth processes.

Principles of Vapor Deposition of Thin Films

Principles of Vapor Deposition of Thin Films
Author: Professor K.S. K.S Sree Harsha
Publsiher: Elsevier
Total Pages: 1176
Release: 2005-12-16
Genre: Technology & Engineering
ISBN: 0080480314

Download Principles of Vapor Deposition of Thin Films Book in PDF, Epub and Kindle

The goal of producing devices that are smaller, faster, more functional, reproducible, reliable and economical has given thin film processing a unique role in technology. Principles of Vapor Deposition of Thin Films brings in to one place a diverse amount of scientific background that is considered essential to become knowledgeable in thin film depostition techniques. Its ultimate goal as a reference is to provide the foundation upon which thin film science and technological innovation are possible. * Offers detailed derivation of important formulae. * Thoroughly covers the basic principles of materials science that are important to any thin film preparation. * Careful attention to terminologies, concepts and definitions, as well as abundance of illustrations offer clear support for the text.

Handbook of Crystal Growth

Handbook of Crystal Growth
Author: Peter Rudolph
Publsiher: Elsevier
Total Pages: 1418
Release: 2014-11-04
Genre: Science
ISBN: 9780444633064

Download Handbook of Crystal Growth Book in PDF, Epub and Kindle

Vol 2A: Basic Technologies Handbook of Crystal Growth, 2nd Edition Volume IIA (Basic Technologies) presents basic growth technologies and modern crystal cutting methods. Particularly, the methodical fundamentals and development of technology in the field of bulk crystallization on both industrial and research scales are explored. After an introductory chapter on the formation of minerals, ruling historically the basic crystal formation parameters, advanced basic technologies from melt, solution, and vapour being applied for research and production of the today most important materials, like silicon, semiconductor compounds and oxides are presented in detail. The interdisciplinary and general importance of crystal growth for human live are illustrated. Vol 2B: Growth Mechanisms and Dynamics Handbook of Crystal Growth, 2nd Edition Volume IIB (Growth Mechanisms and Dynamics) deals with characteristic mechanisms and dynamics accompanying each bulk crystal growth method discussed in Volume IIA. Before the atoms or molecules pass over from a position in the fluid medium (gas, melt or solution) to their place in the crystalline face they must be transported in the fluid over macroscopic distances by diffusion, buoyancy-driven convection, surface-tension-driven convection, and forced convection (rotation, acceleration, vibration, magnetic mixing). Further, the heat of fusion and the part carried by the species on their way to the crystal by conductive and convective transport must be dissipated in the solid phase by well-organized thermal conduction and radiation to maintain a stable propagating interface. Additionally, segregation and capillary phenomena play a decisional role for chemical composition and crystal shaping, respectively. Today, the increase of high-quality crystal yield, its size enlargement and reproducibility are imperative conditions to match the strong economy. Volume 2A Presents the status and future of Czochralski and float zone growth of dislocation-free silicon Examines directional solidification of silicon ingots for photovoltaics, vertical gradient freeze of GaAs, CdTe for HF electronics and IR imaging as well as antiferromagnetic compounds and super alloys for turbine blades Focuses on growth of dielectric and conducting oxide crystals for lasers and non-linear optics Topics on hydrothermal, flux and vapour phase growth of III-nitrides, silicon carbide and diamond are explored Volume 2B Explores capillarity control of the crystal shape at the growth from the melt Highlights modeling of heat and mass transport dynamics Discusses control of convective melt processes by magnetic fields and vibration measures Includes imperative information on the segregation phenomenon and validation of compositional homogeneity Examines crystal defect generation mechanisms and their controllability Illustrates proper automation modes for ensuring constant crystal growth process Exhibits fundamentals of solution growth, gel growth of protein crystals, growth of superconductor materials and mass crystallization for food and pharmaceutical industries