Advanced Computational Materials Modeling

Advanced Computational Materials Modeling
Author: Miguel Vaz Junior,Eduardo A. de Souza Neto,Pablo A. Munoz-Rojas
Publsiher: John Wiley & Sons
Total Pages: 453
Release: 2011-09-22
Genre: Technology & Engineering
ISBN: 9783527632336

Download Advanced Computational Materials Modeling Book in PDF, Epub and Kindle

With its discussion of strategies for modeling complex materials using new numerical techniques, mainly those based on the finite element method, this monograph covers a range of topics including computational plasticity, multi-scale formulations, optimization and parameter identification, damage mechanics and nonlinear finite elements.

Computational Materials Engineering

Computational Materials Engineering
Author: Maciej Pietrzyk,Lukasz Madej,Lukasz Rauch,Danuta Szeliga
Publsiher: Butterworth-Heinemann
Total Pages: 376
Release: 2015-07-14
Genre: Technology & Engineering
ISBN: 9780124167247

Download Computational Materials Engineering Book in PDF, Epub and Kindle

Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations describes the most common computer modeling and simulation techniques used in metals processing, from so-called "fast" models to more advanced multiscale models, also evaluating possible methods for improving computational accuracy and efficiency. Beginning with a discussion of conventional fast models like internal variable models for flow stress and microstructure evolution, the book moves on to advanced multiscale models, such as the CAFÉ method, which give insights into the phenomena occurring in materials in lower dimensional scales. The book then delves into the various methods that have been developed to deal with problems, including long computing times, lack of proof of the uniqueness of the solution, difficulties with convergence of numerical procedures, local minima in the objective function, and ill-posed problems. It then concludes with suggestions on how to improve accuracy and efficiency in computational materials modeling, and a best practices guide for selecting the best model for a particular application. Presents the numerical approaches for high-accuracy calculations Provides researchers with essential information on the methods capable of exact representation of microstructure morphology Helpful to those working on model classification, computing costs, heterogeneous hardware, modeling efficiency, numerical algorithms, metamodeling, sensitivity analysis, inverse method, clusters, heterogeneous architectures, grid environments, finite element, flow stress, internal variable method, microstructure evolution, and more Discusses several techniques to overcome modeling and simulation limitations, including distributed computing methods, (hyper) reduced-order-modeling techniques, regularization, statistical representation of material microstructure, and the Gaussian process Covers both software and hardware capabilities in the area of improved computer efficiency and reduction of computing time

Applied Computational Materials Modeling

Applied Computational Materials Modeling
Author: Guillermo Bozzolo,Ronald D. Noebe,Phillip B. Abel
Publsiher: Springer Science & Business Media
Total Pages: 502
Release: 2007-12-19
Genre: Technology & Engineering
ISBN: 9780387345659

Download Applied Computational Materials Modeling Book in PDF, Epub and Kindle

The scope of this book is to identify and emphasize the successful link between computational materials modeling as a simulation and design tool and its synergistic application to experimental research and alloy development. The book provides a more balanced perspective of the role that computational modeling can play in every day research and development efforts. Each chapter describes one or more particular computational tool and how they are best used.

Computational Materials Engineering

Computational Materials Engineering
Author: Koenraad George Frans Janssens,Dierk Raabe,Ernest Kozeschnik,Mark A Miodownik,Britta Nestler
Publsiher: Academic Press
Total Pages: 360
Release: 2010-07-26
Genre: Technology & Engineering
ISBN: 0080555497

Download Computational Materials Engineering Book in PDF, Epub and Kindle

Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials scientists and engineers, and those involved in materials applications like mechanical engineers, civil engineers, electrical engineers, and chemical engineers. Readers from students to practicing engineers to materials research scientists will find in this book a single source of the major elements that make up contemporary computer modeling of materials characteristics and behavior. The reader will gain an understanding of the underlying statistical and analytical tools that are the basis for modeling complex material interactions, including an understanding of computational thermodynamics and molecular kinetics; as well as various modeling systems. Finally, the book will offer the reader a variety of algorithms to use in solving typical modeling problems so that the theory presented herein can be put to real-world use. Balanced coverage of fundamentals of materials modeling, as well as more advanced aspects of modeling, such as modeling at all scales from the atomic to the molecular to the macro-material Concise, yet rigorous mathematical coverage of such analytical tools as the Potts type Monte Carlo method, cellular automata, phase field, dislocation dynamics and Finite Element Analysis in statistical and analytical modeling

Integrated Computational Materials Engineering ICME for Metals

Integrated Computational Materials Engineering  ICME  for Metals
Author: Mark F. Horstemeyer
Publsiher: John Wiley & Sons
Total Pages: 474
Release: 2012-06-07
Genre: Technology & Engineering
ISBN: 9781118342657

Download Integrated Computational Materials Engineering ICME for Metals Book in PDF, Epub and Kindle

State-of-the-technology tools for designing, optimizing, and manufacturing new materials Integrated computational materials engineering (ICME) uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. Increasingly, ICME is the preferred paradigm for design, development, and manufacturing of structural products. Written by one of the world's leading ICME experts, this text delivers a comprehensive, practical introduction to the field, guiding readers through multiscale materials processing modeling and simulation with easy-to-follow explanations and examples. Following an introductory chapter exploring the core concepts and the various disciplines that have contributed to the development of ICME, the text covers the following important topics with their associated length scale bridging methodologies: Macroscale continuum internal state variable plasticity and damage theory and multistage fatigue Mesoscale analysis: continuum theory methods with discrete features and methods Discrete dislocation dynamics simulations Atomistic modeling methods Electronics structures calculations Next, the author provides three chapters dedicated to detailed case studies, including "From Atoms to Autos: A Redesign of a Cadillac Control Arm," that show how the principles and methods of ICME work in practice. The final chapter examines the future of ICME, forecasting the development of new materials and engineering structures with the help of a cyberinfrastructure that has been recently established. Integrated Computational Materials Engineering (ICME) for Metals is recommended for both students and professionals in engineering and materials science, providing them with new state-of-the-technology tools for selecting, designing, optimizing, and manufacturing new materials. Instructors who adopt this text for coursework can take advantage of PowerPoint lecture notes, a questions and solutions manual, and tutorials to guide students through the models and codes discussed in the text.

Computational Materials Science

Computational Materials Science
Author: Dierk Raabe
Publsiher: Wiley-VCH
Total Pages: 408
Release: 1998-10-27
Genre: Computers
ISBN: UOM:39015047514164

Download Computational Materials Science Book in PDF, Epub and Kindle

Modeling and simulation play an ever increasing role in the development and optimization of materials. Computational Materials Science presents the most important approaches in this new interdisciplinary field of materials science and engineering. The reader will learn to assess which numerical method is appropriate for performing simulations at the various microstructural levels and how they can be coupled. This book addresses graduate students and professionals in materials science and engineering as well as materials-oriented physicists and mechanical engineers.

Integrated Computational Materials Engineering ICME for Metals

Integrated Computational Materials Engineering  ICME  for Metals
Author: Mark F. Horstemeyer
Publsiher: John Wiley & Sons
Total Pages: 474
Release: 2012-07-23
Genre: Science
ISBN: 9781118022528

Download Integrated Computational Materials Engineering ICME for Metals Book in PDF, Epub and Kindle

This text delivers a comprehensive overview of the methods of Integrated Computational Materials Engineering (ICME), and provides clear examples to demonstrate the multiscale modeling methodology. It walks beginners through the various aspects of modeling and simulation related to materials processing.

Advanced Engineering Materials and Modeling

Advanced Engineering Materials and Modeling
Author: Ashutosh Tiwari,N. Arul Murugan,Rajeev Ahuja
Publsiher: John Wiley & Sons
Total Pages: 528
Release: 2016-08-12
Genre: Technology & Engineering
ISBN: 9781119242543

Download Advanced Engineering Materials and Modeling Book in PDF, Epub and Kindle

The engineering of materials with advanced features is driving the research towards the design of innovative materials with high performances. New materials often deliver the best solution for structural applications, precisely contributing towards the finest combination of mechanical properties and low weight. The mimicking of nature's principles lead to a new class of structural materials including biomimetic composites, natural hierarchical materials and smart materials. Meanwhile, computational modeling approaches are the valuable tools complementary to experimental techniques and provide significant information at the microscopic level and explain the properties of materials and their very existence. The modeling also provides useful insights to possible strategies to design and fabricate materials with novel and improved properties. The book brings together these two fascinating areas and offers a comprehensive view of cutting-edge research on materials interfaces and technologies the engineering materials. The topics covered in this book are divided into 2 parts: Engineering of Materials, Characterizations & Applications and Computational Modeling of Materials. The chapters include the following: Mechanical and resistance behavior of structural glass beams Nanocrystalline metal carbides - microstructure characterization SMA-reinforced laminated glass panel Sustainable sugarcane bagasse cellulose for papermaking Electrospun scaffolds for cardiac tissue engineering Bio-inspired composites Density functional theory for studying extended systems First principles based approaches for modeling materials Computer aided materials design Computational materials for stochastic electromagnets Computational methods for thermal analysis of heterogeneous materials Modelling of resistive bilayer structures Modeling tunneling of superluminal photons through Brain Microtubules Computer aided surgical workflow modeling Displaced multiwavelets and splitting algorithms