Applications of Partial Polymorphisms in Fine Grained Complexity of Constraint Satisfaction Problems

Applications of Partial Polymorphisms in  Fine Grained  Complexity of Constraint Satisfaction Problems
Author: Biman Roy
Publsiher: Linköping University Electronic Press
Total Pages: 57
Release: 2020-03-23
Genre: Electronic Book
ISBN: 9789179298982

Download Applications of Partial Polymorphisms in Fine Grained Complexity of Constraint Satisfaction Problems Book in PDF, Epub and Kindle

In this thesis we study the worst-case complexity ofconstraint satisfaction problems and some of its variants. We use methods from universal algebra: in particular, algebras of total functions and partial functions that are respectively known as clones and strong partial clones. The constraint satisfactionproblem parameterized by a set of relations ? (CSP(?)) is the following problem: given a set of variables restricted by a set of constraints based on the relations ?, is there an assignment to thevariables that satisfies all constraints? We refer to the set ? as aconstraint language. The inverse CSPproblem over ? (Inv-CSP(?)) asks the opposite: given a relation R, does there exist a CSP(?) instance with R as its set of models? When ? is a Boolean language, then we use the term SAT(?) instead of CSP(?) and Inv-SAT(?) instead of Inv-CSP(?). Fine-grained complexity is an approach in which we zoom inside a complexity class and classify theproblems in it based on their worst-case time complexities. We start by investigating the fine-grained complexity of NP-complete CSP(?) problems. An NP-complete CSP(?) problem is said to be easier than an NP-complete CSP(?) problem if the worst-case time complexity of CSP(?) is not higher thanthe worst-case time complexity of CSP(?). We first analyze the NP-complete SAT problems that are easier than monotone 1-in-3-SAT (which can be represented by SAT(R) for a certain relation R), and find out that there exists a continuum of such problems. For this, we use the connection between constraint languages and strong partial clones and exploit the fact that CSP(?) is easier than CSP(?) when the strong partial clone corresponding to ? contains the strong partial clone of ?. An NP-complete CSP(?) problem is said to be the easiest with respect to a variable domain D if it is easier than any other NP-complete CSP(?) problem of that domain. We show that for every finite domain there exists an easiest NP-complete problem for the ultraconservative CSP(?) problems. An ultraconservative CSP(?) is a special class of CSP problems where the constraint language containsall unary relations. We additionally show that no NP-complete CSP(?) problem can be solved insub-exponential time (i.e. in2^o(n) time where n is the number of variables) given that theexponentialtime hypothesisis true. Moving to classical complexity, we show that for any Boolean constraint language ?, Inv-SAT(?) is either in P or it is coNP-complete. This is a generalization of an earlier dichotomy result, which was only known to be true for ultraconservative constraint languages. We show that Inv-SAT(?) is coNP-complete if and only if the clone corresponding to ? contains essentially unary functions only. For arbitrary finite domains our results are not conclusive, but we manage to prove that theinversek-coloring problem is coNP-complete for each k>2. We exploit weak bases to prove many of theseresults. A weak base of a clone C is a constraint language that corresponds to the largest strong partia clone that contains C. It is known that for many decision problems X(?) that are parameterized bya constraint language ?(such as Inv-SAT), there are strong connections between the complexity of X(?) and weak bases. This fact can be exploited to achieve general complexity results. The Boolean domain is well-suited for this approach since we have a fairly good understanding of Boolean weak bases. In the final result of this thesis, we investigate the relationships between the weak bases in the Boolean domain based on their strong partial clones and completely classify them according to the setinclusion. To avoid a tedious case analysis, we introduce a technique that allows us to discard a largenumber of cases from further investigation.

Parameterized Verification of Synchronized Concurrent Programs

Parameterized Verification of Synchronized Concurrent Programs
Author: Zeinab Ganjei
Publsiher: Linköping University Electronic Press
Total Pages: 192
Release: 2021-03-19
Genre: Electronic Book
ISBN: 9789179296971

Download Parameterized Verification of Synchronized Concurrent Programs Book in PDF, Epub and Kindle

There is currently an increasing demand for concurrent programs. Checking the correctness of concurrent programs is a complex task due to the interleavings of processes. Sometimes, violation of the correctness properties in such systems causes human or resource losses; therefore, it is crucial to check the correctness of such systems. Two main approaches to software analysis are testing and formal verification. Testing can help discover many bugs at a low cost. However, it cannot prove the correctness of a program. Formal verification, on the other hand, is the approach for proving program correctness. Model checking is a formal verification technique that is suitable for concurrent programs. It aims to automatically establish the correctness (expressed in terms of temporal properties) of a program through an exhaustive search of the behavior of the system. Model checking was initially introduced for the purpose of verifying finite‐state concurrent programs, and extending it to infinite‐state systems is an active research area. In this thesis, we focus on the formal verification of parameterized systems. That is, systems in which the number of executing processes is not bounded a priori. We provide fully-automatic and parameterized model checking techniques for establishing the correctness of safety properties for certain classes of concurrent programs. We provide an open‐source prototype for every technique and present our experimental results on several benchmarks. First, we address the problem of automatically checking safety properties for bounded as well as parameterized phaser programs. Phaser programs are concurrent programs that make use of the complex synchronization construct of Habanero Java phasers. For the bounded case, we establish the decidability of checking the violation of program assertions and the undecidability of checking deadlock‐freedom. For the parameterized case, we study different formulations of the verification problem and propose an exact procedure that is guaranteed to terminate for some reachability problems even in the presence of unbounded phases and arbitrarily many spawned processes. Second, we propose an approach for automatic verification of parameterized concurrent programs in which shared variables are manipulated by atomic transitions to count and synchronize the spawned processes. For this purpose, we introduce counting predicates that related counters that refer to the number of processes satisfying some given properties to the variables that are directly manipulated by the concurrent processes. We then combine existing works on the counter, predicate, and constrained monotonic abstraction and build a nested counterexample‐based refinement scheme to establish correctness. Third, we introduce Lazy Constrained Monotonic Abstraction for more efficient exploration of well‐structured abstractions of infinite‐state non‐monotonic systems. We propose several heuristics and assess the efficiency of the proposed technique by extensive experiments using our open‐source prototype. Lastly, we propose a sound but (in general) incomplete procedure for automatic verification of safety properties for a class of fault‐tolerant distributed protocols described in the Heard‐Of (HO for short) model. The HO model is a popular model for describing distributed protocols. We propose a verification procedure that is guaranteed to terminate even for unbounded number of the processes that execute the distributed protocol.

Beyond Recognition

Beyond Recognition
Author: Le Minh-Ha
Publsiher: Linköping University Electronic Press
Total Pages: 103
Release: 2024-05-06
Genre: Electronic Book
ISBN: 9789180756761

Download Beyond Recognition Book in PDF, Epub and Kindle

This thesis addresses the need to balance the use of facial recognition systems with the need to protect personal privacy in machine learning and biometric identification. As advances in deep learning accelerate their evolution, facial recognition systems enhance security capabilities, but also risk invading personal privacy. Our research identifies and addresses critical vulnerabilities inherent in facial recognition systems, and proposes innovative privacy-enhancing technologies that anonymize facial data while maintaining its utility for legitimate applications. Our investigation centers on the development of methodologies and frameworks that achieve k-anonymity in facial datasets; leverage identity disentanglement to facilitate anonymization; exploit the vulnerabilities of facial recognition systems to underscore their limitations; and implement practical defenses against unauthorized recognition systems. We introduce novel contributions such as AnonFACES, StyleID, IdDecoder, StyleAdv, and DiffPrivate, each designed to protect facial privacy through advanced adversarial machine learning techniques and generative models. These solutions not only demonstrate the feasibility of protecting facial privacy in an increasingly surveilled world, but also highlight the ongoing need for robust countermeasures against the ever-evolving capabilities of facial recognition technology. Continuous innovation in privacy-enhancing technologies is required to safeguard individuals from the pervasive reach of digital surveillance and protect their fundamental right to privacy. By providing open-source, publicly available tools, and frameworks, this thesis contributes to the collective effort to ensure that advancements in facial recognition serve the public good without compromising individual rights. Our multi-disciplinary approach bridges the gap between biometric systems, adversarial machine learning, and generative modeling to pave the way for future research in the domain and support AI innovation where technological advancement and privacy are balanced.

Companion Robots for Older Adults

Companion Robots for Older Adults
Author: Sofia Thunberg
Publsiher: Linköping University Electronic Press
Total Pages: 175
Release: 2024-05-06
Genre: Electronic Book
ISBN: 9789180755740

Download Companion Robots for Older Adults Book in PDF, Epub and Kindle

This thesis explores, through a mixed-methods approach, what happens when companion robots are deployed in care homes for older adults by looking at different perspectives from key stakeholders. Nine studies are presented with decision makers in municipalities, care staff and older adults, as participants, and the studies have primarily been carried out in the field in care homes and activity centres, where both qualitative (e.g., observations and workshops) and quantitative data (surveys) have been collected. The thesis shows that companion robots seem to be here to stay and that they can contribute to a higher quality of life for some older adults. It further presents some challenges with a certain discrepancy between what decision makers want and what staff might be able to facilitate. For future research and use of companion robots, it is key to evaluate each robot model and potential use case separately and develop clear routines for how they should be used, and most importantly, let all stakeholders be part of the process. The knowledge contribution is the holistic view of how different actors affect each other when emerging robot technology is introduced in a care environment. Den här avhandlingen utforskar vad som händer när sällskapsrobotar införs på omsorgsboenden för äldre genom att titta på perspektiv från olika intressenter. Nio studier presenteras med kommunala beslutsfattare, vårdpersonal och äldre som deltagare. Studierna har i huvudsak genomförts i fält på särskilda boenden och aktivitetscenter där både kvalitativa- (exempelvis observationer och workshops) och kvantitativa data (enkäter) har samlats in. Avhandlingen visar att sällskapsrobotar verkar vara här för att stanna och att de kan bidra till en högre livskvalitet för vissa äldre. Den visar även på en del utmaningar med en viss diskrepans mellan vad beslutsfattare vill införa och vad personalen har möjlighet att utföra i sitt arbete. För framtida forskning och användning av sällskapsrobotar är det viktigt att utvärdera varje robotmodell och varje användningsområde var för sig och ta fram tydliga rutiner för hur de ska användas, och viktigast av allt, låta alla intressenter vara en del av processen. Kunskapsbidraget med avhandlingen är en helhetssyn på hur olika aktörer påverkar varandra när ny robotteknik introduceras i en vårdmiljö

Designing for Resilience

Designing for Resilience
Author: Vanessa Rodrigues
Publsiher: Linköping University Electronic Press
Total Pages: 137
Release: 2020-05-05
Genre: Electronic books
ISBN: 9789179298678

Download Designing for Resilience Book in PDF, Epub and Kindle

Services are prone to change in the form of expected and unexpected variations and disruptions, more so given the increasing interconnectedness and complexity of service systems today. These changes require service systems to be resilient and designed to adapt, to ensure that services continue to work smoothly. This thesis problematises the prevailing view and assumptions underpinning the current understanding of resilience in services. Drawing on literature from service management, service design, systems thinking and social-ecological resilience theory, this work investigates how service design can foster resilience in service systems. Supported by empirical input from three research projects in healthcare, the findings show service design can contribute to the adaptability and transformability of service systems through its holistic, human-centred, participatory and experimental approaches. Through the analysis, this research identifies key intervention points for cultivating service systems resilience through service design, including the design of service interactions, processes, enabling structures and multi-level governance. The study makes two important contributions. First, it extends the understanding of service systems resilience as the collective capacity for intentional action in responding to ongoing change, coordinated across scales in order to create value. This is supported by offering alternative assumptions about resilience in service. Second, it positions service design as an enabler of service resilience by explicitly linking design practice(s) to processes that contribute to resilience. By extending the understanding of service systems resilience, this thesis lays the groundwork for future research at the intersection of service design, systemic change and resilience.

Principles and Practice of Constraint Programming

Principles and Practice of Constraint Programming
Author: J. Christopher Beck
Publsiher: Springer
Total Pages: 724
Release: 2017-08-22
Genre: Mathematics
ISBN: 9783319661582

Download Principles and Practice of Constraint Programming Book in PDF, Epub and Kindle

This book constitutes the refereed conference proceedings of the 23nd International Conference on Principles and Practice of Constraint Programming, CP 2017, held in Melbourne, Australia from August 28, 2017 until September 1, 2017. The conference is colocated with the 20th International Conference on Theory and Applications of Satisfiability Testing (SAT 2017) and the 33rd International Conference on Logic Programming. The 46 revised full papers presented were carefully reviewed and selected from 115 submissions. The scope of the contributions includes all aspects of computing with constraints, including theory, algorithms, environments, languages, models, systems, and applications such as decision making, resource al location, scheduling, configuration, and planning. The papers are grouped into the following tracks: technical track; application track; machine learning & CP track; operations research & CP track; satisfiability & CP track, test and verification & CP track; journal & sister conference track.

Mathematics and Computation

Mathematics and Computation
Author: Avi Wigderson
Publsiher: Princeton University Press
Total Pages: 434
Release: 2019-10-29
Genre: Computers
ISBN: 9780691189130

Download Mathematics and Computation Book in PDF, Epub and Kindle

An introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Constraint based Reasoning

Constraint based Reasoning
Author: Eugene C. Freuder,Alan K. Mackworth
Publsiher: MIT Press
Total Pages: 420
Release: 1994
Genre: Computers
ISBN: 0262560755

Download Constraint based Reasoning Book in PDF, Epub and Kindle

Constraint-based reasoning is an important area of automated reasoning in artificial intelligence, with many applications. These include configuration and design problems, planning and scheduling, temporal and spatial reasoning, defeasible and causal reasoning, machine vision and language understanding, qualitative and diagnostic reasoning, and expert systems. Constraint-Based Reasoning presents current work in the field at several levels: theory, algorithms, languages, applications, and hardware. Constraint-based reasoning has connections to a wide variety of fields, including formal logic, graph theory, relational databases, combinatorial algorithms, operations research, neural networks, truth maintenance, and logic programming. The ideal of describing a problem domain in natural, declarative terms and then letting general deductive mechanisms synthesize individual solutions has to some extent been realized, and even embodied, in programming languages. Contents Introduction, E. C. Freuder, A. K. Mackworth * The Logic of Constraint Satisfaction, A. K. Mackworth * Partial Constraint Satisfaction, E. C. Freuder, R. J. Wallace * Constraint Reasoning Based on Interval Arithmetic: The Tolerance Propagation Approach, E. Hyvonen * Constraint Satisfaction Using Constraint Logic Programming, P. Van Hentenryck, H. Simonis, M. Dincbas * Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems, S. Minton, M. D. Johnston, A. B. Philips, and P. Laird * Arc Consistency: Parallelism and Domain Dependence, P. R. Cooper, M. J. Swain * Structure Identification in Relational Data, R. Dechter, J. Pearl * Learning to Improve Constraint-Based Scheduling, M. Zweben, E. Davis, B. Daun, E. Drascher, M. Deale, M. Eskey * Reasoning about Qualitative Temporal Information, P. van Beek * A Geometric Constraint Engine, G. A. Kramer * A Theory of Conflict Resolution in Planning, Q. Yang A Bradford Book.