Atmospheric Convection

Atmospheric Convection
Author: Kerry A. Emanuel
Publsiher: Oxford University Press, USA
Total Pages: 598
Release: 1994
Genre: Nature
ISBN: 0195066308

Download Atmospheric Convection Book in PDF, Epub and Kindle

"[A]n excellent monograph by a leading atmospheric scientist...will be consulted by everyone interested in the complexities of dynamical meteorology and in the improvement of practical methods of climate and weather prediction."--Physics Today

Atmospheric Convection Research and Operational Forecasting Aspects

Atmospheric Convection  Research and Operational Forecasting Aspects
Author: Dario B. Giaiotti,Reinhold Steinacker,Fulvio Stel
Publsiher: Springer Science & Business Media
Total Pages: 227
Release: 2007-12-14
Genre: Technology & Engineering
ISBN: 9783211692912

Download Atmospheric Convection Research and Operational Forecasting Aspects Book in PDF, Epub and Kindle

This book treats atmospheric convection from different angles including the theoretical aspects of atmospheric deep convection and the weather phenomena related to convection. The problem of boundary conditions that result in severe convective weather patterns is explored within the framework of worldwide climatology. The book bridges the gap between theory and its operational application both within the fields of weather forecasting and that of risk management.

Parameterization of Atmospheric Convection

Parameterization of Atmospheric Convection
Author: Robert S Plant,Jun-Ichi Yano
Publsiher: World Scientific
Total Pages: 1172
Release: 2015-08-21
Genre: Technology & Engineering
ISBN: 9781783266920

Download Parameterization of Atmospheric Convection Book in PDF, Epub and Kindle

Precipitating atmospheric convection is fundamental to the Earth's weather and climate. It plays a leading role in the heat, moisture and momentum budgets. Appropriate modelling of convection is thus a prerequisite for reliable numerical weather prediction and climate modelling. The current standard approach is to represent it by subgrid-scale convection parameterization. Parameterization of Atmospheric Convection provides, for the first time, a comprehensive presentation of this important topic. The two-volume set equips readers with a firm grasp of the wide range of important issues, and thorough coverage is given of both the theoretical and practical aspects. This makes the parameterization problem accessible to a wider range of scientists than before. At the same time, by providing a solid bottom-up presentation of convection parameterization, this set is the definitive reference point for atmospheric scientists and modellers working on such problems. Volume 1 of this two-volume set focuses on the basic principles: introductions to atmospheric convection and tropical dynamics, explanations and discussions of key parameterization concepts, and a thorough and critical exploration of the mass-flux parameterization framework, which underlies the methods currently used in almost all operational models and at major climate modelling centres. Volume 2 focuses on the practice, which also leads to some more advanced fundamental issues. It includes: perspectives on operational implementations and model performance, tailored verification approaches, the role and representation of cloud microphysics, alternative parameterization approaches, stochasticity, criticality, and symmetry constraints. Contents:Volume 1:Basic Parameterization Concepts and Issues:Moist Atmospheric Convection: An Introduction and Overview (Á Horváth)Sub-Grid Parameterization Problem (J-I Yano)Scale Separation (J-I Yano)Quasi-Equilibrium (R S Plant and J-I Yano)Tropical Dynamics: Large-Scale Convectively Coupled Waves (Ž Fuchs)Mass-Flux Parameterization:Hot-Tower Hypothesis and Mass-Flux Formulation (J-I Yano)Formulation of the Mass-Flux Convective Parameterization (J-I Yano)Thermodynamic Effects of Convection under the Mass-Flux Formulation (J-I Yano)Spectral and Bulk Mass-Flux Representations (R S Plant and O Martínez-Alvarado)Entrainment and Detrainment Formulations for Mass-Flux Parameterization (W C de Rooy, J-I Yano, P Bechtold and S J Böing)Closure (J-I Yano and R S Plant)Convective Vertical Velocity (J-I Yano)Downdraughts (J-I Yano)Momentum Transfer (J-I Yano)Volume 2:Operational Issues:Convection in Global Numerical Weather Prediction (P Bechtold)Satellite Observations of Convection and Their Implications for Parameterizations (J Quaas and P Stier)Convection and Waves on Small Planets and the Real Earth (P Bechtold, N Semane and S Malardel)Microphysics of Convective Cloud and Its Treatment in Parameterization (V T J Phillips and J-I Yano)Model Resolution Issues and New Approaches in the Convection-Permitting Regimes (L Gerard)Stochastic Aspects of Convective Parameterization (R S Plant, L Bengtsson and M A Whitall)Verification of High-Resolution Precipitation Forecast with Radar-Based Data (D Řezáčová, B Szintai, B Jakubiak, J-I Yano and S Turner)Unification and Consistency:Formulations of Moist Thermodynamics for Atmospheric Modelling (P Marquet and J-F Geleyn)Representation of Microphysical Processes in Cloud-Resolving Models (A P Khain)Cumulus Convection as a Turbulent Flow (A Grant)Clouds and Convection as Subgrid-Scale Distributions (E Machulskaya)Towards a Unified and Self-Consistent Parameterization Framework (J-I Yano, L Bengtsson, J-F Geleyn and R Brozkova)Theoretical Physics Perspectives:Regimes of Self-Organized Criticality in Atmospheric Convection (F Spineanu, M Vlad and D Palade)Invariant and Conservative Parameterization Schemes (A Bihlo, E Dos Santos Cardoso-Bihlo and R O Popovych)Conclusions:Conclusions (R S Plant and J-I Yano) Readership: Atmospheric scientists and modellers. Key Features:The first coherent book to focus on convective parameterization for climate modelling and numerical weather predictionClear focus on the underpinning theory of parameterization, and its possible extensionsPlaces current efforts to improve parameterizations firmly into the theoretical context rather than focusing on details of the technical implementation or changes to overall model performanceKeywords:Atmospheric Convection;Parameterization;Numerical Modelling;Numerical Weather Prediction;Global Climate Modelling

The Physics and Parameterization of Moist Atmospheric Convection

The Physics and Parameterization of Moist Atmospheric Convection
Author: R.K. Smith
Publsiher: Springer Science & Business Media
Total Pages: 499
Release: 2013-04-17
Genre: Science
ISBN: 9789401588287

Download The Physics and Parameterization of Moist Atmospheric Convection Book in PDF, Epub and Kindle

An up-to-date summary of our understanding of the dynamics and thermodynamics of moist atmospheric convection, with a strong focus on recent developments in the field. The book also reviews ways in which moist convection may be parameterised in large-scale numerical models - a field in which there is still some controversy - and discusses the implications of convection for large-scale flow. Audience: The book is aimed at the graduate level and research meteorologists as well as scientists in other disciplines who need to know more about moist convection and its representation in numerical models.

The Representation of Cumulus Convection in Numerical Models

The Representation of Cumulus Convection in Numerical Models
Author: Kerry Emanuel
Publsiher: Springer
Total Pages: 242
Release: 2015-03-30
Genre: Science
ISBN: 9781935704133

Download The Representation of Cumulus Convection in Numerical Models Book in PDF, Epub and Kindle

This book presents descriptions of numerical models for testing cumulus in cloud fields. It is divided into six parts. Part I provides an overview of the problem, including descriptions of cumulus clouds and the effects of ensembles of cumulus clouds on mass, momentum, and vorticity distributions. A review of closure assumptions is also provided. A review of "classical" convection schemes in widespread use is provided in Part II. The special problems associated with the representation of convection in mesoscale models are discussed in Part III, along with descriptions of some of the commonly used mesoscale schemes. Part IV covers some of the problems associated with the representation of convection in climate models, while the parameterization of slantwise convection is the subject of Part V.

Geophysical Convection Dynamics

Geophysical Convection Dynamics
Author: Jun-Ichi Yano
Publsiher: Elsevier
Total Pages: 304
Release: 2023-05-08
Genre: Science
ISBN: 9780323998017

Download Geophysical Convection Dynamics Book in PDF, Epub and Kindle

Geophysical Convection Dynamics, Volume Five provides a single source reference that enables researchers to go through the basics of geophysical convection. The book includes basics on the dynamics of convection, including linear stability analysis, weakly nonlinear theory, effect of rotation, and double diffusion. In addition, it includes detailed descriptions of fully developed turbulence in well-mixed boundary layers, a hypothesis of vertical homogeneity, effects of moisture, and the formation of clouds. The book focuses on the presentation of the theoretical methodologies for studying convection dynamics with an emphasis on geophysical application that is relevant to fields across the earth and environmental sciences, chemistry and engineering. Guides and prepares early-stage researchers to plunge directly into research Provides a synthesis of the existing literature on topics including linear stability analysis, weakly nonlinear theory, effect of rotation, double diffusion, description of fully developed turbulence in well-mixed boundary layers, hypothesis of vertical homogeneity, effects of moisture, formation of clouds at the top, and cloud-top entrainment instability Presents geophysical convection to readers as a common problem spanning the atmosphere, oceans, and the Earth's mantle

Convection in Fluids

Convection in Fluids
Author: Radyadour Kh. Zeytounian
Publsiher: Springer Science & Business Media
Total Pages: 396
Release: 2009-07-21
Genre: Science
ISBN: 9789048124336

Download Convection in Fluids Book in PDF, Epub and Kindle

This monograph, entirely devoted to “Convection in Fluids”, presents a unified rational approach of various convective phenomena in fluids (mainly considered as a thermally perfect gas or an expansible liquid), where the main driving mechanism is the buoyancy force (Archimedean thrust) or temperature-dependent surface tension in homogeneities (Marangoni effect). Also, the general mathematical formulation (for instance, in the Bénard problem - heated from below) and the effect of free surface deformation are taken into account. In the case of atmospheric thermal convection, the Coriolis force and stratification effects are also considered. This volume gives a rational and analytical analysis of the above mentioned physical effects on the basis of the full unsteady Navier-Stokes and Fourier (NS-F) equations - for a Newtonian compressible viscous and heat-conducting fluid - coupled with the associated initials (at initial time), boundary (lower-at the solid plane) and free surface (upper-in contact with ambiant air) conditions. This, obviously, is not an easy but a necessary task if we have in mind a rational modelling process, and work within a numerically coherent simulation on a high speed computer.

Geophysical Astrophysical Convection

Geophysical   Astrophysical Convection
Author: Peter A Fox,Robert M. Kerr
Publsiher: CRC Press
Total Pages: 396
Release: 2000-08-08
Genre: Science
ISBN: 9056992589

Download Geophysical Astrophysical Convection Book in PDF, Epub and Kindle

Geophysical and Astrophysical Convection collects important papers from an international group of the world's foremost researchers in geophysical and astrophysical convection to present a concise overview of recent thinking in the field. Topics include: Atmospheric convection, solar and stellar convection, unsteady non-penetrative thermal convection, astrophysical convection and dynamos, dynamics of cumulus entertainment, turbulent convection: helical buoyant convection, transport phenomena, potential vorticity, rotating convective turbulence, and the modeling and simulation various types of convection and turbulence.