Big Data Research for Social Sciences and Social Impact

Big Data Research for Social Sciences and Social Impact
Author: Miltiadis D. Lytras,Anna Visvizi,Kwok Tai Chui
Publsiher: MDPI
Total Pages: 416
Release: 2020-03-19
Genre: Technology & Engineering
ISBN: 9783039282203

Download Big Data Research for Social Sciences and Social Impact Book in PDF, Epub and Kindle

A new era of innovation is enabled by the integration of social sciences and information systems research. In this context, the adoption of Big Data and analytics technology brings new insight to the social sciences. It also delivers new, flexible responses to crucial social problems and challenges. We are proud to deliver this edited volume on the social impact of big data research. It is one of the first initiatives worldwide analyzing of the impact of this kind of research on individuals and social issues. The organization of the relevant debate is arranged around three pillars: Section A: Big Data Research for Social Impact: • Big Data and Their Social Impact; • (Smart) Citizens from Data Providers to Decision-Makers; • Towards Sustainable Development of Online Communities; • Sentiment from Online Social Networks; • Big Data for Innovation. Section B. Techniques and Methods for Big Data driven research for Social Sciences and Social Impact: • Opinion Mining on Social Media; • Sentiment Analysis of User Preferences; • Sustainable Urban Communities; • Gender Based Check-In Behavior by Using Social Media Big Data; • Web Data-Mining Techniques; • Semantic Network Analysis of Legacy News Media Perception. Section C. Big Data Research Strategies: • Skill Needs for Early Career Researchers—A Text Mining Approach; • Pattern Recognition through Bibliometric Analysis; • Assessing an Organization’s Readiness to Adopt Big Data; • Machine Learning for Predicting Performance; • Analyzing Online Reviews Using Text Mining; • Context–Problem Network and Quantitative Method of Patent Analysis. Complementary social and technological factors including: • Big Social Networks on Sustainable Economic Development; Business Intelligence.

Big Data Research for Social Sciences and Social Impact

Big Data Research for Social Sciences and Social Impact
Author: Kwok Tai Chui,Anna Visvizi,Miltiadis Lytras
Publsiher: Unknown
Total Pages: 416
Release: 2020
Genre: Engineering (General). Civil engineering (General)
ISBN: 3039282212

Download Big Data Research for Social Sciences and Social Impact Book in PDF, Epub and Kindle

A new era of innovation is enabled by the integration of social sciences and information systems research. In this context, the adoption of Big Data and analytics technology brings new insight to the social sciences. It also delivers new, flexible responses to crucial social problems and challenges. We are proud to deliver this edited volume on the social impact of big data research. It is one of the first initiatives worldwide analyzing of the impact of this kind of research on individuals and social issues. The organization of the relevant debate is arranged around three pillars: Section A: Big Data Research for Social Impact: • Big Data and Their Social Impact; • (Smart) Citizens from Data Providers to Decision-Makers; • Towards Sustainable Development of Online Communities; • Sentiment from Online Social Networks; • Big Data for Innovation. Section B. Techniques and Methods for Big Data driven research for Social Sciences and Social Impact: • Opinion Mining on Social Media; • Sentiment Analysis of User Preferences; • Sustainable Urban Communities; • Gender Based Check-In Behavior by Using Social Media Big Data; • Web Data-Mining Techniques; • Semantic Network Analysis of Legacy News Media Perception. Section C. Big Data Research Strategies: • Skill Needs for Early Career Researchers--A Text Mining Approach; • Pattern Recognition through Bibliometric Analysis; • Assessing an Organization's Readiness to Adopt Big Data; • Machine Learning for Predicting Performance; • Analyzing Online Reviews Using Text Mining; • Context-Problem Network and Quantitative Method of Patent Analysis. Complementary social and technological factors including: • Big Social Networks on Sustainable Economic Development; Business Intelligence.

Big Data and Social Science

Big Data and Social Science
Author: Ian Foster,Rayid Ghani,Ron S. Jarmin,Frauke Kreuter,Julia Lane
Publsiher: CRC Press
Total Pages: 413
Release: 2020-11-17
Genre: Mathematics
ISBN: 9781000208597

Download Big Data and Social Science Book in PDF, Epub and Kindle

Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition shows how to apply data science to real-world problems, covering all stages of a data-intensive social science or policy project. Prominent leaders in the social sciences, statistics, and computer science as well as the field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and collect appropriate data, apply data science methods and tools to the data, and recognize and respond to data errors, biases, and limitations. Features: Takes an accessible, hands-on approach to handling new types of data in the social sciences Presents the key data science tools in a non-intimidating way to both social and data scientists while keeping the focus on research questions and purposes Illustrates social science and data science principles through real-world problems Links computer science concepts to practical social science research Promotes good scientific practice Provides freely available workbooks with data, code, and practical programming exercises, through Binder and GitHub New to the Second Edition: Increased use of examples from different areas of social sciences New chapter on dealing with Bias and Fairness in Machine Learning models Expanded chapters focusing on Machine Learning and Text Analysis Revamped hands-on Jupyter notebooks to reinforce concepts covered in each chapter This classroom-tested book fills a major gap in graduate- and professional-level data science and social science education. It can be used to train a new generation of social data scientists to tackle real-world problems and improve the skills and competencies of applied social scientists and public policy practitioners. It empowers you to use the massive and rapidly growing amounts of available data to interpret economic and social activities in a scientific and rigorous manner.

Data Science for Social Good

Data Science for Social Good
Author: Massimo Lapucci,Ciro Cattuto
Publsiher: Springer
Total Pages: 99
Release: 2021-10-14
Genre: Science
ISBN: 3030789845

Download Data Science for Social Good Book in PDF, Epub and Kindle

This book is a collection of reflections by thought leaders at first-mover organizations in the exploding field of "Data Science for Social Good", meant as the application of knowledge from computer science, complex systems and computational social science to challenges such as humanitarian response, public health, sustainable development. The book provides both an overview of scientific approaches to social impact – identifying a social need, targeting an intervention, measuring impact – and the complementary perspective of funders and philanthropies that are pushing forward this new sector. This book will appeal to students and researchers in the rapidly growing field of data science for social impact, to data scientists at companies whose data could be used to generate more public value, and to decision makers at nonprofits, foundations, and agencies that are designing their own agenda around data.

Big Data and Social Science

Big Data and Social Science
Author: Ian Foster,Rayid Ghani,Ron S. Jarmin,Frauke Kreuter,Julia Lane
Publsiher: CRC Press
Total Pages: 493
Release: 2016-08-10
Genre: Mathematics
ISBN: 9781498751438

Download Big Data and Social Science Book in PDF, Epub and Kindle

Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.

Data Analysis for Social Science

Data Analysis for Social Science
Author: Elena Llaudet,Kosuke Imai
Publsiher: Princeton University Press
Total Pages: 256
Release: 2022-11-29
Genre: Computers
ISBN: 9780691199436

Download Data Analysis for Social Science Book in PDF, Epub and Kindle

"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--

Big Data and Social Science

Big Data and Social Science
Author: Ian Foster,Rayid Ghani,Ron S. Jarmin,Frauke Kreuter,Julia Lane
Publsiher: CRC Press
Total Pages: 413
Release: 2020-11-17
Genre: Mathematics
ISBN: 9781000208597

Download Big Data and Social Science Book in PDF, Epub and Kindle

Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition shows how to apply data science to real-world problems, covering all stages of a data-intensive social science or policy project. Prominent leaders in the social sciences, statistics, and computer science as well as the field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and collect appropriate data, apply data science methods and tools to the data, and recognize and respond to data errors, biases, and limitations. Features: Takes an accessible, hands-on approach to handling new types of data in the social sciences Presents the key data science tools in a non-intimidating way to both social and data scientists while keeping the focus on research questions and purposes Illustrates social science and data science principles through real-world problems Links computer science concepts to practical social science research Promotes good scientific practice Provides freely available workbooks with data, code, and practical programming exercises, through Binder and GitHub New to the Second Edition: Increased use of examples from different areas of social sciences New chapter on dealing with Bias and Fairness in Machine Learning models Expanded chapters focusing on Machine Learning and Text Analysis Revamped hands-on Jupyter notebooks to reinforce concepts covered in each chapter This classroom-tested book fills a major gap in graduate- and professional-level data science and social science education. It can be used to train a new generation of social data scientists to tackle real-world problems and improve the skills and competencies of applied social scientists and public policy practitioners. It empowers you to use the massive and rapidly growing amounts of available data to interpret economic and social activities in a scientific and rigorous manner.

Big Data in Computational Social Science and Humanities

Big Data in Computational Social Science and Humanities
Author: Shu-Heng Chen
Publsiher: Springer
Total Pages: 388
Release: 2018-11-21
Genre: Computers
ISBN: 9783319954653

Download Big Data in Computational Social Science and Humanities Book in PDF, Epub and Kindle

This edited volume focuses on big data implications for computational social science and humanities from management to usage. The first part of the book covers geographic data, text corpus data, and social media data, and exemplifies their concrete applications in a wide range of fields including anthropology, economics, finance, geography, history, linguistics, political science, psychology, public health, and mass communications. The second part of the book provides a panoramic view of the development of big data in the fields of computational social sciences and humanities. The following questions are addressed: why is there a need for novel data governance for this new type of data?, why is big data important for social scientists?, and how will it revolutionize the way social scientists conduct research? With the advent of the information age and technologies such as Web 2.0, ubiquitous computing, wearable devices, and the Internet of Things, digital society has fundamentally changed what we now know as "data", the very use of this data, and what we now call "knowledge". Big data has become the standard in social sciences, and has made these sciences more computational. Big Data in Computational Social Science and Humanities will appeal to graduate students and researchers working in the many subfields of the social sciences and humanities.