Bioinspired Legged Locomotion

Bioinspired Legged Locomotion
Author: Maziar Ahmad Sharbafi,André Seyfarth
Publsiher: Butterworth-Heinemann
Total Pages: 638
Release: 2017-11-21
Genre: Technology & Engineering
ISBN: 9780128037744

Download Bioinspired Legged Locomotion Book in PDF, Epub and Kindle

Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. Presents state-of-the-art control approaches with biological relevance Provides a thorough understanding of the principles of organization of biological locomotion Teaches the organization of complex systems based on low-dimensional motion concepts/control Acts as a guideline reference for future robots/assistive devices with legged architecture Includes a selective bibliography on the most relevant published articles

Bio Inspired Robotics

Bio Inspired Robotics
Author: Toshio Fukuda,Fei Chen,Qing Shi
Publsiher: MDPI
Total Pages: 555
Release: 2018-11-07
Genre: Electronic books
ISBN: 9783038970453

Download Bio Inspired Robotics Book in PDF, Epub and Kindle

This book is a printed edition of the Special Issue "Bio-Inspired Robotics" that was published in Applied Sciences

Mechanical Design Development and Testing of Bioinspired Legged Robots for Dynamic Locomotion

Mechanical Design  Development and Testing of Bioinspired Legged Robots for Dynamic Locomotion
Author: Alborz Aghamaleki Sarvestani
Publsiher: Unknown
Total Pages: 0
Release: 2022
Genre: Electronic Book
ISBN: OCLC:1427256253

Download Mechanical Design Development and Testing of Bioinspired Legged Robots for Dynamic Locomotion Book in PDF, Epub and Kindle

Multi Locomotion Robotic Systems

Multi Locomotion Robotic Systems
Author: Toshio Fukuda,Yasuhisa Hasegawa,Kosuke Sekiyama,Tadayoshi Aoyama
Publsiher: Springer
Total Pages: 314
Release: 2012-06-15
Genre: Technology & Engineering
ISBN: 9783642301353

Download Multi Locomotion Robotic Systems Book in PDF, Epub and Kindle

Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as hardware of Multi-Locomotion Robotic system. It is useful for students and researchers in the field of robotics in general, bio-inspired robots, multi-modal locomotion, legged walking, motion control, and humanoid robots. Furthermore, it is also of interest for lecturers and engineers in practice building systems cooperating with humans.

Quadrupedal Locomotion

Quadrupedal Locomotion
Author: Pablo González de Santos,Elena Garcia,Joaquin Estremera
Publsiher: Springer Science & Business Media
Total Pages: 268
Release: 2007-02-17
Genre: Technology & Engineering
ISBN: 9781846283079

Download Quadrupedal Locomotion Book in PDF, Epub and Kindle

Walking machines have advantages over traditional vehicles, and have already accomplished tasks that wheeled or tracked robots cannot handle. Nevertheless, their use in industry and services is currently limited in scope. This book brings together methods and techniques that have been developed to deal with obstacles to wider acceptance of legged robots. Part I provides an historical overview. Part II concentrates on control techniques, as applied to Four-legged robots.

Biologically Inspired Approaches for Locomotion Anomaly Detection and Reconfiguration for Walking Robots

Biologically Inspired Approaches for Locomotion  Anomaly Detection and Reconfiguration for Walking Robots
Author: Bojan Jakimovski
Publsiher: Springer Science & Business Media
Total Pages: 203
Release: 2011-08-20
Genre: Technology & Engineering
ISBN: 9783642225055

Download Biologically Inspired Approaches for Locomotion Anomaly Detection and Reconfiguration for Walking Robots Book in PDF, Epub and Kindle

The increasing presence of mobile robots in our everyday lives introduces the requirements for their intelligent and autonomous features. Therefore the next generation of mobile robots should be more self-capable, in respect to: increasing of their functionality in unforeseen situations, decreasing of the human involvement in their everyday operations and their maintenance; being robust; fault tolerant and reliable in their operation. Although mobile robotic systems have been a topic of research for decades and aside the technology improvements nowadays, the subject on how to program and making them more autonomous in their operations is still an open field for research. Applying bio-inspired, organic approaches in robotics domain is one of the methodologies that are considered that would help on making the robots more autonomous and self-capable, i.e. having properties such as: self-reconfiguration, self-adaptation, self-optimization, etc. In this book several novel biologically inspired approaches for walking robots (multi-legged and humanoid) domain are introduced and elaborated. They are related to self-organized and self-stabilized robot walking, anomaly detection within robot systems using self-adaptation, and mitigating the faulty robot conditions by self-reconfiguration of a multi-legged walking robot. The approaches presented have been practically evaluated in various test scenarios, the results from the experiments are discussed in details and their practical usefulness is validated.

Biologically Inspired Robotics

Biologically Inspired Robotics
Author: Yunhui Liu,Dong Sun
Publsiher: CRC Press
Total Pages: 343
Release: 2011-12-21
Genre: Medical
ISBN: 9781439854884

Download Biologically Inspired Robotics Book in PDF, Epub and Kindle

Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers in the fields of control engineering, robotics, and biomedical engineering, this text helps readers understand the technology and principles in this emerging field.

Springer Handbook of Robotics

Springer Handbook of Robotics
Author: Bruno Siciliano,Oussama Khatib
Publsiher: Springer
Total Pages: 2259
Release: 2016-07-27
Genre: Technology & Engineering
ISBN: 9783319325521

Download Springer Handbook of Robotics Book in PDF, Epub and Kindle

The second edition of this handbook provides a state-of-the-art overview on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook’s team. A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app. Springer Handbook of Robotics Multimedia Extension Portal: http://handbookofrobotics.org/