Biological Materials Science

Biological Materials Science
Author: Marc André Meyers,Po-Yu Chen
Publsiher: Cambridge University Press
Total Pages: 647
Release: 2014-07-31
Genre: Medical
ISBN: 9781107010451

Download Biological Materials Science Book in PDF, Epub and Kindle

Takes a materials science approach, correlating structure-property relationships with function across a broad range of biological materials.

Handbook Of Biomimetics And Bioinspiration Biologically driven Engineering Of Materials Processes Devices And Systems In 3 Volumes

Handbook Of Biomimetics And Bioinspiration  Biologically driven Engineering Of Materials  Processes  Devices  And Systems  In 3 Volumes
Author: Jabbari Esmaiel,Lee Luke P,Ghaemmaghami Amir
Publsiher: World Scientific
Total Pages: 1464
Release: 2014-04-29
Genre: Technology & Engineering
ISBN: 9789814520270

Download Handbook Of Biomimetics And Bioinspiration Biologically driven Engineering Of Materials Processes Devices And Systems In 3 Volumes Book in PDF, Epub and Kindle

Global warming, pollution, food and water shortage, cyberspace insecurity, over-population, land erosion, and an overburdened health care system are major issues facing the human race and our planet. These challenges have presented a mandate to develop “natural” or “green” technologies using nature and the living system as a guide to rationally design processes, devices, and systems. This approach has given rise to a new paradigm, one in which innovation goes hand-in-hand with less waste, less pollution, and less invasiveness to life on earth. Bioinspiration has also led to the development of technologies that mimic the hierarchical complexity of biological systems, leading to novel highly efficient, more reliable multifunctional materials, devices, and systems that can perform multiple tasks at one time. This multi-volume handbook focuses on the application of biomimetics and bioinspiration in medicine and engineering to produce miniaturized multi-functional materials, devices, and systems to perform complex tasks. Our understanding of complex biological systems at different length scales has increased dramatically as our ability to observe nature has expanded from macro to molecular scale, leading to the rational biologically-driven design to find solution to technological problems in medicine and engineering.The following three-volume set covers the fields of bioinspired materials, electromechanical systems developed from concepts inspired by nature, and tissue models respectively.The first volume focuses on the rational design of nano- and micro-structured hierarchical materials inspired by the relevant characteristics in living systems, such as the self-cleaning ability of lotus leaves and cicadas' wings; the superior walking ability of water striders; the anti-fogging function of mosquitoes' eyes; the water-collecting ability of Namib Desert Beetles and spider silk; the high adhesivity of geckos' feet and rose petals; the high adhesivity of mussels in wet aquatic environments; the anisotropic wetting of butterflies' wings; the anti-reflection capabilities of cicadas' wings; the self-cleaning functionality of fish scales; shape anisotropy of intracellular particles; the dielectric properties of muscles; the light spectral characteristics of plant leaves; the regeneration and self-healing ability of earthworms; the self-repairing ability of lotus leaves; the broadband reflectivity of moths' eyes; the multivalent binding, self-assembly and responsiveness of cellular systems; the biomineral formation in bacteria, plants, invertebrates, and vertebrates; the multi-layer structure of skin; the organization of tissue fibers; DNA structures with metal-mediated artificial base pairs; and the anisotropic microstructure of jellyfish mesogloea. In this volume, sensor and microfluidic technologies combined with surface patterning are explored for the diagnosis and monitoring of diseases. The high throughput combinatorial testing of biomaterials in regenerative medicine is also covered.The second volume presents nature-oriented studies and developments in the field of electromechanical devices and systems. These include actuators and robots based on the movement of muscles, algal antenna and photoreception; the non-imaging light sensing system of sea stars; the optical system of insect ocellus; smart nanochannels and pumps in cell membranes; neuromuscular and sensory devices that mimic the architecture of peripheral nervous system; olfaction-based odor sensing; cilia-mimetic microfluidic systems; the infrared sensory system of pyrophilous insects; ecologically inspired multizone temperature control systems; cochlea and surface acoustic wave resonators; crickets' cercal system and flow sensing abilities; locusts' wings and flapping micro air vehicles; the visual motion sensing of flying insects; hearing aid devices based on the human cochlea; the geometric perception of tortoises and pigeons; the organic matter sensing capability of cats and dogs; and the silent flight of rats. The third volume features engineered models of biological tissues. These include engineered matrices to mimic cancer stem cell niches; in vitro models for bone regeneration; models of muscle tissue that enable the study of cardiac infarction and myopathy; 3D models for the differentiation of embryonic stem cells; bioreactors for in vitro cultivation of mammalian cells; human lung, liver and heart tissue models; topographically-defined cell culture models; ECM mimetic tissue printing; biomimetic constructs for regeneration of soft tissues; and engineered constructs for the regeneration of musculoskeletal and corneal tissue.This three-volume set is a must-have for anyone keen to understand the complexity of biological systems and how that complexity can be mimicked to engineer novel materials, devices and systems to solve pressing technological challenges of the twenty-first century.Key Features:The only handbook that covers all aspects of biomimetics and bioinspiration, including materials, mechanics, signaling and informaticsContains 248 colored figures

Bioinspired Materials for Medical Applications

Bioinspired Materials for Medical Applications
Author: Lígia Rodrigues,Manuel Mota
Publsiher: Woodhead Publishing
Total Pages: 544
Release: 2016-09-24
Genre: Technology & Engineering
ISBN: 9780081007464

Download Bioinspired Materials for Medical Applications Book in PDF, Epub and Kindle

Bioinspired Materials for Medical Applications examines the inspiration of natural materials and their interpretation as modern biomaterials. With a strong focus on therapeutic and diagnostic applications, the book also examines the development and manipulation of bioinspired materials in regenerative medicine. The first set of chapters is heavily focused on bioinspired solutions for the delivery of drugs and therapeutics that also offer information on the fundamentals of these materials. Chapters in part two concentrate on bioinspired materials for diagnosis applications with a wide coverage of sensor and imaging systems With a broad coverage of the applications of bioinspired biomaterials, this book is a valuable resource for biomaterials researchers, clinicians, and scientists in academia and industry, and all those who wish to broaden their knowledge in the allied field. Explores how materials designed and produced with inspiration from nature can be used to enhance man-made biomaterials and medical devices Brings together the two fields of biomaterials and bioinspired materials Written by a world-class team of research scientists, engineers, and clinicians

Biological and Bioinspired Materials and Devices

Biological and Bioinspired Materials and Devices
Author: Materials Research Society. Meeting
Publsiher: Unknown
Total Pages: 288
Release: 2004
Genre: Technology & Engineering
ISBN: UOM:39015061157072

Download Biological and Bioinspired Materials and Devices Book in PDF, Epub and Kindle

The special interest afforded biological and bioinspired materials and devices lies in the fact that many biological materials, as diverse as bone and teeth and spider silk, have highly refined and sophisticated platforms of structure that are well organized at hierarchical levels spanning nanoscale to microscale measures. There is absolutely strict and precise control of materials synthesis exerted by these natural systems, and vigorous study and advancement in the fields of biomineralization, molecular biology, and DNA technology, for instance, have brought increasing understanding of such control in ever expanding fashion. This knowledge has been quickly transferred into the design and development of synthetic materials that mimic their biological counterparts. In this context, an explosion in research in the past few years has centered on the identification and synthesis of 1) unique ceramics or composites for biomaterials, magnetic and optical use, 2) self-assembled biopolymeric systems for biomaterials and biosensor application, and 3) colloidal and amphiphilic systems for relevance in biomedicine, nanotechnology, and biosensor fabrication. Therefore, new nanocrystalline composites, nanofibers, biosteel fibers, novel biosensors, distinctive drug-delivery systems, exceptional tissue engineering scaffolds, exclusive molecular imprinting matrices, and innovative photonic crystals are suddenly available. Given this backdrop, the papers in this volume involve biology, medicine, engineering, physics, chemistry, and materials science. Topics include biomineralization and the structure and mechanical, magnetic, and optical properties of biominerals; implant materials for dental, maxillofacial, orthopaedic, urological, and ophthalmic applications; tissue adhesives and cements; material degradation and implant failure; organic modification of surfaces and their biocompatibility; tissue engineering with cells and scaffolding to generate extracellular matrices for tissue regeneration; emerging technologies in tissue engineering, including application of stem cells and gene therapy; in situ and ex situ characterization techniques and imaging of biomaterials; pharmaceutical crystallization and materials for drug and gene delivery; supramolecular and biological self assembly; and structure and dynamics of organic/inorganic interfaces.

NanoBioTechnology

NanoBioTechnology
Author: Oded Shoseyov,Ilan Levy
Publsiher: Springer Science & Business Media
Total Pages: 478
Release: 2008-02-07
Genre: Science
ISBN: 9781597452182

Download NanoBioTechnology Book in PDF, Epub and Kindle

NanoBiotechnology is a groundbreaking text investigating the recent advances and future direction of nanobiotechnology. It will assist scientists and students in learning the fundamentals and cutting-edge nature of this new and emerging science. Focusing on materials and building blocks for nanotechnology, leading scientists from around the world share their knowledge and expertise in this authoritative volume.

Materials in Biology and Medicine

Materials in Biology and Medicine
Author: Sunggyu Lee,David Henthorn
Publsiher: CRC Press
Total Pages: 263
Release: 2012-03-21
Genre: Technology & Engineering
ISBN: 9781439881699

Download Materials in Biology and Medicine Book in PDF, Epub and Kindle

While the interdisciplinary field of materials science and engineering is relatively new, remarkable developments in materials have emerged for biological and medical applications, from biocompatible polymers in medical devices to the use of carbon nanotubes as drug delivery vehicles. Exploring these materials and applications, Materials in Biology and Medicine presents the background and real-world examples of advanced materials in biomedical engineering, biology, and medicine. With peer-reviewed chapters written by a select group of academic and industry experts, the book focuses on biomaterials and bioinspired materials, functional and responsive materials, controlling biology with materials, and the development of devices and enabling technologies. It fully describes the relevant scientific background and thoroughly discusses the logical sequences of new development and applications. Presenting a consistent scientific treatment of all topics, this comprehensive yet accessible book covers the most advanced materials used in biology and medicine. It will help readers tackle challenges of novel materials, carry out new process and product development projects, and create new methodologies for applications that enhance the quality of life.

Biological and Bio inspired Nanomaterials

Biological and Bio inspired Nanomaterials
Author: Sarah Perrett,Alexander K. Buell,Tuomas P.J. Knowles
Publsiher: Springer Nature
Total Pages: 440
Release: 2019-11-11
Genre: Medical
ISBN: 9789811397912

Download Biological and Bio inspired Nanomaterials Book in PDF, Epub and Kindle

This book summarizes naturally occurring and designed bio-inspired molecular building blocks assembled into nanoscale structures. It covers a fascinating array of biomimetic and bioinspired materials, including inorganic nanozymes, structures formed by DNA origami, a wide range of peptide and protein-based nanomaterials, as well as their applications in diagnostics and therapeutics. The book elucidates the mechanism of assembly of these materials and characterisation of their mechanical and physico-chemical properties which inspires readers not only to exploit the potential applications of nanomaterials, but also to understand their potential risks and benefits. It will be of interest to a broad audience of students and researchers spanning the disciplines of biology, chemistry, engineering, materials science, and physics.

Advances in Bioinspired and Biomedical Materials

Advances in Bioinspired and Biomedical Materials
Author: Yoshihiro Ito,Inn-Kyu Kang
Publsiher: ACS Symposium
Total Pages: 208
Release: 2018-08-02
Genre: Medical
ISBN: 0841232202

Download Advances in Bioinspired and Biomedical Materials Book in PDF, Epub and Kindle

Bioinspired concepts are becoming increasingly integrated into materials and devices intended for medical applications. Biological organisms evolve within specific environmental constraints, giving rise to elegant and efficient strategies for fabricating materials that often outperform man-made materials of similar composition. A main goal of the interdisciplinary field of bioinspired materials is to unlock the secrets of this process--the composition, processing, self-assembly, hierarchical organization, and properties of biological materials--and use this information to synthesize and engineer novel functional materials for a variety of practical applications. The authors are from a variety of scientific disciplines, including biology, biochemistry, chemistry, physics, materials science, mechanical engineering, and bioengineering. This book will appeal to readers interested in the cross-disciplinary fertilization of new ideas in this emerging field. The first volume of this book includes sections focused on the bioinspired approaches using biological macromolecules including poly(nucleic acids), polypeptides, and the derivatives. Both volumes cover the interdisciplinary fields of biological, synthetic, and the hybrid materials and describe their medical applications ranging from molecular to cellular levels.