Computational Finite Element Methods in Nanotechnology

Computational Finite Element Methods in Nanotechnology
Author: Sarhan M. Musa
Publsiher: CRC Press
Total Pages: 640
Release: 2017-12-19
Genre: Science
ISBN: 9781439893265

Download Computational Finite Element Methods in Nanotechnology Book in PDF, Epub and Kindle

Computational Finite Element Methods in Nanotechnology demonstrates the capabilities of finite element methods in nanotechnology for a range of fields. Bringing together contributions from researchers around the world, it covers key concepts as well as cutting-edge research and applications to inspire new developments and future interdisciplinary research. In particular, it emphasizes the importance of finite element methods (FEMs) for computational tools in the development of efficient nanoscale systems. The book explores a variety of topics, including: A novel FE-based thermo-electrical-mechanical-coupled model to study mechanical stress, temperature, and electric fields in nano- and microelectronics The integration of distributed element, lumped element, and system-level methods for the design, modeling, and simulation of nano- and micro-electromechanical systems (N/MEMS) Challenges in the simulation of nanorobotic systems and macro-dimensions The simulation of structures and processes such as dislocations, growth of epitaxial films, and precipitation Modeling of self-positioning nanostructures, nanocomposites, and carbon nanotubes and their composites Progress in using FEM to analyze the electric field formed in needleless electrospinning How molecular dynamic (MD) simulations can be integrated into the FEM Applications of finite element analysis in nanomaterials and systems used in medicine, dentistry, biotechnology, and other areas The book includes numerous examples and case studies, as well as recent applications of microscale and nanoscale modeling systems with FEMs using COMSOL Multiphysics® and MATLAB®. A one-stop reference for professionals, researchers, and students, this is also an accessible introduction to computational FEMs in nanotechnology for those new to the field.

Computational Methods for Nanoscale Applications

Computational Methods for Nanoscale Applications
Author: Igor Tsukerman
Publsiher: Springer Science & Business Media
Total Pages: 543
Release: 2007-12-24
Genre: Technology & Engineering
ISBN: 9780387747781

Download Computational Methods for Nanoscale Applications Book in PDF, Epub and Kindle

Positioning itself at the common boundaries of several disciplines, this work provides new perspectives on modern nanoscale problems where fundamental science meets technology and computer modeling. In addition to well-known computational techniques such as finite-difference schemes and Ewald summation, the book presents a new finite-difference calculus of Flexible Local Approximation Methods (FLAME) that qualitatively improves the numerical accuracy in a variety of problems.

Composites with Micro and Nano Structure

Composites with Micro  and Nano Structure
Author: Vladimír Kompiš
Publsiher: Springer Science & Business Media
Total Pages: 300
Release: 2010-02-18
Genre: Technology & Engineering
ISBN: 9781402069758

Download Composites with Micro and Nano Structure Book in PDF, Epub and Kindle

This book presents new results in the knowledge and simulations for composite nano-materials. It includes selected, extended papers presented in the thematic ECCOMAS conference on Composites with Micro- and Nano-Structure (CMNS) – Computational Modelling and Experiments. It contains atomistic and continuum numerical methods and experimental validation for composite materials reinforced with particles or fibres, porous materials, homogenization and other important topics.

Computational Modelling of Nanomaterials

Computational Modelling of Nanomaterials
Author: Panagiotis Grammatikopoulos
Publsiher: Elsevier
Total Pages: 244
Release: 2020-09-30
Genre: Technology & Engineering
ISBN: 9780128214985

Download Computational Modelling of Nanomaterials Book in PDF, Epub and Kindle

Due to their small size and their dependence on very fast phenomena, nanomaterials are ideal systems for computational modelling. This book provides an overview of various nanosystems classified by their dimensions: 0D (nanoparticles, QDs, etc.), 1D (nanowires, nanotubes), 2D (thin films, graphene, etc.), 3D (nanostructured bulk materials, devices). Fractal dimensions, such as nanoparticle agglomerates, percolating films and combinations of materials of different dimensionalities are also covered (e.g. epitaxial decoration of nanowires by nanoparticles, i.e. 0D+1D nanomaterials). For each class, the focus will be on growth, structure, and physical/chemical properties. The book presents a broad range of techniques, including density functional theory, molecular dynamics, non-equilibrium molecular dynamics, finite element modelling (FEM), numerical modelling and meso-scale modelling. The focus is on each method’s relevance and suitability for the study of materials and phenomena in the nanoscale. This book is an important resource for understanding the mechanisms behind basic properties of nanomaterials, and the major techniques for computational modelling of nanomaterials. Explores the major modelling techniques used for different classes of nanomaterial Assesses the best modelling technique to use for each different type of nanomaterials Discusses the challenges of using certain modelling techniques with specific nanomaterials

Finite Element Methods and Their Applications

Finite Element Methods and Their Applications
Author: Mahboub Baccouch
Publsiher: BoD – Books on Demand
Total Pages: 318
Release: 2021-11-17
Genre: Computers
ISBN: 9781839623417

Download Finite Element Methods and Their Applications Book in PDF, Epub and Kindle

This book provides several applications of the finite element method (FEM) for solving real-world problems. FEM is a widely used technique for numerical simulations in many areas of physics and engineering. It has gained increased popularity over recent years for the solution of complex engineering and science problems. FEM is now a powerful and popular numerical method for solving differential equations, with flexibility in dealing with complex geometric domains and various boundary conditions. The method has a wide range of applications in various branches of engineering such as mechanical engineering, thermal and fluid flows, electromagnetics, business management, and many others. This book describes the development of FEM and discusses and illustrates its specific applications.

Characteristics Finite Element Methods in Computational Fluid Dynamics

Characteristics Finite Element Methods in Computational Fluid Dynamics
Author: Joe Iannelli
Publsiher: Springer Science & Business Media
Total Pages: 744
Release: 2006-09-24
Genre: Science
ISBN: 9783540453437

Download Characteristics Finite Element Methods in Computational Fluid Dynamics Book in PDF, Epub and Kindle

This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations.

Finite Element Modeling of Nanotube Structures

Finite Element Modeling of Nanotube Structures
Author: Mokhtar Awang,Ehsan Mohammadpour,Ibrahim Dauda Muhammad
Publsiher: Springer
Total Pages: 212
Release: 2015-10-24
Genre: Science
ISBN: 9783319031972

Download Finite Element Modeling of Nanotube Structures Book in PDF, Epub and Kindle

This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.

Computational Materials Modeling and Simulation of Nanostructured Materials and Systems

Computational Materials  Modeling and Simulation of Nanostructured Materials and Systems
Author: Thomas S. Gates
Publsiher: Unknown
Total Pages: 24
Release: 2003
Genre: Composite materials
ISBN: NASA:31769000648173

Download Computational Materials Modeling and Simulation of Nanostructured Materials and Systems Book in PDF, Epub and Kindle