Computational Methods for Electron Molecule Collisions

Computational Methods for Electron   Molecule Collisions
Author: Franco A. Gianturco,W.M. Huo
Publsiher: Springer Science & Business Media
Total Pages: 374
Release: 2013-06-29
Genre: Science
ISBN: 9781475797978

Download Computational Methods for Electron Molecule Collisions Book in PDF, Epub and Kindle

The collision of electrons with molecules and molecular ions is a fundamental pro cess in atomic and molecular physics and in chemistry. At high incident electron en ergies, electron-molecule collisions are used to deduce molecular geometries, oscillator strengths for optically allowed transitions, and in the case of electron-impact ionization, to probe the momentum distribution of the molecule itself. When the incident electron energy is comparable to or below those of the molecular valence electrons, the physics involved is particularly rich. Correlation and exchange effects necessary to describe such collision processes bear a close resemblance to similar efft:cts in the theory of electronic structure in molecules. Compound state formations, in the form of resonances and vir tual states, manifest themselves in experimental observables which provide details of the electron-molecule interactions. Ro-vibrational excitations by low-energy electron collisions exemplify energy transfer between the electronic and nuclear motion. The role of nonadiabatic interaction is raised here. When the final vibrational state is in the continuum, molecular dissociation occurs. Dissociative recombination and dissociative attachment are examples of such fragmentation processes. In addition to its fundamental nature, the study of electron-molecule collisions is also motivated by its relation to other fields of study and by its technological appli cations. The study of planetary atmospheres and the interstellar medium necessarily involve collision processes of electrons with molecules and molecular ions.

Electron Atom and Electron Molecule Collisions

Electron Atom and Electron Molecule Collisions
Author: Jürgen Hinze
Publsiher: Springer Science & Business Media
Total Pages: 353
Release: 2013-11-11
Genre: Science
ISBN: 9781489921482

Download Electron Atom and Electron Molecule Collisions Book in PDF, Epub and Kindle

The papers collected in this volume have been presented during a workshop on "Electron-Atom and Molecule Collisions" held at the Centre for Interdisciplinary Studies of the University of Bielefeld in May 1980. This workshop, part of a larger program concerned with the "Properties and Reactions of Isolated Molecules and Atoms," focused on the theory and computational techniques for the quanti tative description of electron scattering phenomena. With the advances which have been made in the accurate quantum mechanical characterisation of bound states of atoms and molecules, the more complicated description of the unbound systems and resonances important in electron collision processes has matured too. As expli cated in detail in the articles of this volume, the theory for the quantitative explanation of elastic and inelastic electron molecule collisions, of photo- and multiple photon ionization and even for electron impact ionization is well developed in a form which lends itself to a complete quantitative ab initio interpretation and pre diction of the observable effects. Many of the experiences gained and the techniques which have evolved over the years in the com putational characterization of bound states have become an essential basis for this development. To be sure, much needs to be done before we have a complete and detailed theoretical understanding of the known collisional processes and of the phenomena and effects, which may still be un covered with the continuing refinement of the experimental tech niques.

Electron Molecule and Photon Molecule Collisions

Electron Molecule and Photon Molecule Collisions
Author: T.N. Rescigno
Publsiher: Springer Science & Business Media
Total Pages: 350
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9781468469882

Download Electron Molecule and Photon Molecule Collisions Book in PDF, Epub and Kindle

The First Asilomar Conference on Electron- and Photon-Molecule Collisions was held August 1-4, 1978 in Pacific Grove, California. This meeting brought together forty scientists who are actively involved in theoretical studies of electron scattering by, and photoionization of, small molecules. In this volume, are collected the contributions of the invited speakers, as well as the roundtable and evening discussions condensed from taped recordings of the entire proceedings. The subject matter reflects current activity in the field and describes many of the techniques that are being developed and applied to molecular collision problems. We would like to thank the Air Force Office of Scientific Research (AFOSR) and the Office of Naval Research (ONR) for providing the financial support that made this conference possible. Special thanks are due to Dr. Robert Junker of ONR and Dr. Ralph Kelley of AFOSR for the interest and encouragement they provided in all phases of this meeting. We also thank all the participants whose efforts and contributions made this conference a success. Finally, we thank Ms. Charlotte MacNaughton and Ms. Sara Jackson for the many hours they spent transcribing tapes and preparing this volume for publication.

Electron Molecule Collisions

Electron Molecule Collisions
Author: Isao Shimamura,Kazuo Takayanagi
Publsiher: Springer Science & Business Media
Total Pages: 578
Release: 2013-11-11
Genre: Science
ISBN: 9781461323570

Download Electron Molecule Collisions Book in PDF, Epub and Kindle

Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiation physics, the physics of gas discharges, magnetohydrodynamic power generation, and so on. This book aims at introducing the reader to the problem of electron molecule collisions, elucidating the physics behind the phenomena, and review ing, to some extent, up-to-date important results. This book should be appropri ate for graduate reading in physics and chemistry. We also believe that investi gators in atomic and molecular physics will benefit much from this book.

Computational Atomic Physics

Computational Atomic Physics
Author: Klaus Bartschat
Publsiher: Springer
Total Pages: 264
Release: 2013-06-29
Genre: Science
ISBN: 9783642610103

Download Computational Atomic Physics Book in PDF, Epub and Kindle

Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.

Novel Aspects of Electron molecule Collisions

Novel Aspects of Electron molecule Collisions
Author: Kurt H. Becker
Publsiher: World Scientific
Total Pages: 364
Release: 1998
Genre: Science
ISBN: 9810234694

Download Novel Aspects of Electron molecule Collisions Book in PDF, Epub and Kindle

Covers theoretical and experimental activities in the field of electron molecule collisions, with chapters on areas including positive and negative ion formation in electron collisions with fullerenes, spin effects in electron molecule collisions, collisions with oriented and aligned molecules, and electron impact dissociative excitation and ionization of molecular ions. Other subjects include electron-molecule cross sections for plasma application, and improvements to the complex Kohn variational method. No index. Annotation copyrighted by Book News, Inc., Portland, OR

Electron Atom and Electron Molecule Collisions

Electron Atom and Electron Molecule Collisions
Author: Jurgen Hinze
Publsiher: Springer
Total Pages: 364
Release: 2014-01-15
Genre: Electronic Book
ISBN: 1489921494

Download Electron Atom and Electron Molecule Collisions Book in PDF, Epub and Kindle

Swarm Studies and Inelastic Electron Molecule Collisions

Swarm Studies and Inelastic Electron Molecule Collisions
Author: Leanne C. Pitchford,B. Vincent McKoy,Ara Chutjian,Sandar Trajmar
Publsiher: Springer Science & Business Media
Total Pages: 402
Release: 2012-12-06
Genre: Science
ISBN: 9781461246626

Download Swarm Studies and Inelastic Electron Molecule Collisions Book in PDF, Epub and Kindle

This volume presents the contributions of participants in the Symposium on Swarm Studies and Inelastic Electron-Molecule Collisions, held on July 19-23, 1985, in Tahoe City, California. This was a joint meeting of the Fourth International Swarm Seminar and the Electron-Molecule Collisions Symposium which have been traditionally separate satellite symposia to the International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC). In the early stages of planning for these two satellite symposia to the XIVth ICPEAC, a group of us recognized the significant scientific merit and advantages of having a joint symposium. This idea was particularly appealing due to a large mutual interest in important advances (theoretical, experimental, and modeling) in both fields, and because it provides a forum to bring together a single-collision point of view with a multiple-collision one. For example, studies of multiple-term solutions to Boltzmann's equation and their application to swarm systems are intrinsically coupled to the availability of both integral and differential cross-sections for electron-molecule collisions. In tum, experimental and theoretical studies of these electron-molecule scattering cross-sections are becoming quite sophisticated, accurate, and comprehensive. Furthermore, in swarm studies, computational and experimental methods have advanced to the point where detailed and meaningful comparison with, and use of, single-collision beam data is now possible. More over, recent experimental advances in the study of single-collision electron at tachment phenomena have provided a significant overlap with swarm data and extension to subthermal energies.