Deep Learning

Deep Learning
Author: Ian Goodfellow,Yoshua Bengio,Aaron Courville
Publsiher: MIT Press
Total Pages: 801
Release: 2016-11-10
Genre: Computers
ISBN: 9780262337373

Download Deep Learning Book in PDF, Epub and Kindle

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Neural Networks and Deep Learning

Neural Networks and Deep Learning
Author: Charu C. Aggarwal
Publsiher: Springer
Total Pages: 497
Release: 2018-08-25
Genre: Computers
ISBN: 9783319944630

Download Neural Networks and Deep Learning Book in PDF, Epub and Kindle

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Deep Neural Networks in a Mathematical Framework

Deep Neural Networks in a Mathematical Framework
Author: Anthony L. Caterini,Dong Eui Chang
Publsiher: Springer
Total Pages: 84
Release: 2018-03-22
Genre: Computers
ISBN: 9783319753041

Download Deep Neural Networks in a Mathematical Framework Book in PDF, Epub and Kindle

This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks. This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory
Author: Daniel A. Roberts,Sho Yaida,Boris Hanin
Publsiher: Cambridge University Press
Total Pages: 473
Release: 2022-05-26
Genre: Computers
ISBN: 9781316519332

Download The Principles of Deep Learning Theory Book in PDF, Epub and Kindle

This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Strengthening Deep Neural Networks

Strengthening Deep Neural Networks
Author: Katy Warr
Publsiher: "O'Reilly Media, Inc."
Total Pages: 246
Release: 2019-07-03
Genre: Computers
ISBN: 9781492044901

Download Strengthening Deep Neural Networks Book in PDF, Epub and Kindle

As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come

Deep Neural Networks

Deep Neural Networks
Author: Yunong Zhang,Dechao Chen,Chengxu Ye
Publsiher: CRC Press
Total Pages: 340
Release: 2019-03-19
Genre: Business & Economics
ISBN: 9780429760990

Download Deep Neural Networks Book in PDF, Epub and Kindle

Toward Deep Neural Networks: WASD Neuronet Models, Algorithms, and Applications introduces the outlook and extension toward deep neural networks, with a focus on the weights-and-structure determination (WASD) algorithm. Based on the authors’ 20 years of research experience on neuronets, the book explores the models, algorithms, and applications of the WASD neuronet, and allows reader to extend the techniques in the book to solve scientific and engineering problems. The book will be of interest to engineers, senior undergraduates, postgraduates, and researchers in the fields of neuronets, computer mathematics, computer science, artificial intelligence, numerical algorithms, optimization, simulation and modeling, deep learning, and data mining. Features Focuses on neuronet models, algorithms, and applications Designs, constructs, develops, analyzes, simulates and compares various WASD neuronet models, such as single-input WASD neuronet models, two-input WASD neuronet models, three-input WASD neuronet models, and general multi-input WASD neuronet models for function data approximations Includes real-world applications, such as population prediction Provides complete mathematical foundations, such as Weierstrass approximation, Bernstein polynomial approximation, Taylor polynomial approximation, and multivariate function approximation, exploring the close integration of mathematics (i.e., function approximation theories) and computers (e.g., computer algorithms) Utilizes the authors' 20 years of research on neuronets

Applied Deep Learning

Applied Deep Learning
Author: Umberto Michelucci
Publsiher: Apress
Total Pages: 425
Release: 2018-09-07
Genre: Computers
ISBN: 9781484237908

Download Applied Deep Learning Book in PDF, Epub and Kindle

Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You’ll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You’ll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). What You Will Learn Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset Who This Book Is For Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.

Efficient Processing of Deep Neural Networks

Efficient Processing of Deep Neural Networks
Author: Vivienne Sze,Yu-Hsin Chen,Tien-Ju Yang,Joel S. Emer
Publsiher: Springer Nature
Total Pages: 254
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 9783031017667

Download Efficient Processing of Deep Neural Networks Book in PDF, Epub and Kindle

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.