Deterministic Numerical Modeling of Soil Structure Interaction

Deterministic Numerical Modeling of Soil Structure Interaction
Author: Stephane Grange,Diana Salciarini
Publsiher: John Wiley & Sons
Total Pages: 242
Release: 2022-01-26
Genre: Technology & Engineering
ISBN: 9781786307989

Download Deterministic Numerical Modeling of Soil Structure Interaction Book in PDF, Epub and Kindle

In order to describe soil–structure interaction in various situations (nonlinear, static, dynamic, hydro-mechanical couplings), this book gives an overview of the main modeling methods developed in geotechnical engineering. The chapters are centered around: the finite element method (FEM), the finite difference method (FDM), and the discrete element method (DEM). Deterministic Numerical Modeling of Soil–Structure Interaction allows the reader to explore the classical and well-known FEM and FDM, using interface and contact elements available for coupled hydro-mechanical problems. Furthermore, this book provides insight on the DEM, adapted for interaction laws at the grain level. Within a classical finite element framework, the concept of macro-element is introduced, which generalizes constitutive laws of SSI and is particularly straightforward in dynamic situations. Finally, this book presents the SSI, in the case of a group of structures, such as buildings in a town, using the notion of metamaterials and a geophysics approach.

Soil Structure Interaction Numerical Analysis and Modelling

Soil Structure Interaction  Numerical Analysis and Modelling
Author: J.W. Bull
Publsiher: CRC Press
Total Pages: 754
Release: 1993-12-09
Genre: Architecture
ISBN: 0419190708

Download Soil Structure Interaction Numerical Analysis and Modelling Book in PDF, Epub and Kindle

This book describes how a number of different methods of analysis and modelling, including the boundary element method, the finite element method, and a range of classical methods, are used to answer some of the questions associated with soil-structure interaction.

Modelling of Soil Structure Interaction

Modelling of Soil Structure Interaction
Author: V. Kolár,I. Nemec
Publsiher: Elsevier
Total Pages: 334
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 9780444598981

Download Modelling of Soil Structure Interaction Book in PDF, Epub and Kindle

Distributed in the East European countries, China, Northern Korea, Cuba, Vietnam and Mongolia by Academia, Prague, CzechoslovakiaThis book is based on the efficient subsoil model introduced by the authors in 1977 and applied in the last ten years in the design of foundations. From the designer's point of view, the model considerably reduces the extent of the calculations connected with the numerical analysis of soil-structure interaction. The algorithms presented are geared for use on mini- and personal computers and can be used in any numerical method. A special chapter is devoted to the implementation of the model in the NE-XX finite element program package, illustrated with diagrams, tables and practical examples.Besides presenting the energy definition and general theory of both 2D and 3D model forms, the book also deals with practical problems such as Kirchhoff's and Mindlin's foundation plates, interaction between neighbouring structures, actual values of physical constants of subsoils and natural frequencies and shapes of foundation plates.Today, researchers and engineers can choose from a wide range of soil models, some fairly simple and others very elaborate. However, the gap which has long existed between geomechanical theory and everyday design practice still persists. The present book is intended to suit the practical needs of the designer by introducing an efficient subsoil model in which the surrounding soil is substituted by certain properties of the structure-soil interface. When a more precise solution is required, a more sophisticated model form can be used. Its additional degrees of deformation freedom can better express the behaviour of layered or generally unhomogeneous subsoil. As a result, designers will find that this book goes some way towards bridging the above-mentioned gap between structural design theory and day-to-day practice.

Dynamic Soil Structure Interaction

Dynamic Soil Structure Interaction
Author: C. Zhang,John P Wolf
Publsiher: Elsevier
Total Pages: 320
Release: 1998-09-22
Genre: Science
ISBN: 0080530583

Download Dynamic Soil Structure Interaction Book in PDF, Epub and Kindle

Dynamic Soil-structure interaction is one of the major topics in earthquake engineering and soil dynamics since it is closely related to the safety evaluation of many important engineering projects, such as nuclear power plants, to resist earthquakes. In dealing with the analysis of dynamic soil-structure interactions, one of the most difficult tasks is the modeling of unbounded media. To solve this problem, many numerical methods and techniques have been developed. This book summarizes the most recent developments and applications in the field of dynamic soil-structure interaction, both in China and Switzerland. An excellent book for scientists and engineers in civil engineering, structural engineering, geotechnical engineering and earthquake engineering.

Modeling of the Soil structure Interaction

Modeling of the Soil structure Interaction
Author: Todor Zhelyazov
Publsiher: Unknown
Total Pages: 168
Release: 2020
Genre: Technology & Engineering
ISBN: 1536176842

Download Modeling of the Soil structure Interaction Book in PDF, Epub and Kindle

This edited book provides discussion and presents results related to some "hot topics," all dealing with the soil-structure interaction. The book can be of interest to both scientists involved in academic studies of the problems addressed and for practitioners engaged in high-level design.Chapter I reports the investigation of non-stationary wave propagation in continuously inhomogeneous cylindrical elements (such as pipelines). New results obtained by numerical analysis of non-stationary wave propagation are presented. The cases studied comprise simulations of the propagations of both one-dimensional and two-dimensional non-stationary waves. Waves of the first type are supposed to propagate in continuously inhomogeneous, linearly viscoelastic cylinders, whereas waves of the second type propagate in continuously inhomogeneous elastic cylinders. The authors of this chapter apply an original research method consisting of the implementation of solutions to dynamic problems in the study of elastic and linearly viscoelastic piecewise homogeneous bodies.Chapter II outlines an analytical study of the propagation of different types of waves (plane, cylindrical, spherical) as well as of the waves' interaction with an element of Vibro-isolation (specifically, a three-layer plate). The author also presents the numerical results of the study of the distribution of the vibration accelerations in soil.Chapter III presents details on the analytical modeling of a bearing device for passive seismic isolation (friction-pendulum system). The behavior of the slider is identical to a motion of a particle constrained to slide on a spherical surface. The analytical model includes equations of motion, derived using the Lagrange formalism and constitutive equations of the sliding interface. The author presents the results of the numerical simulation of the response of the bearing device to a seismic event, assuming a constant value of the friction coefficient.Chapter IV proposes a discussion on the assessment of the load-carrying capacity of a metal-resin anchor and the determination of dependencies between parameters of supporting systems that include anchors. The solution to the problems addressed in this study involves an accurate analysis of the load transfer mechanisms between different system components. The proposed strategy requires the implementation of an algorithm aimed at the reconstruction of the analytical form of a function, provided its tabular form is available. The authors also formulate a theorem that postulates the existence of such representation applicable in a more general context.The research object in Chapter V is the formulation of the boundary value problems for circular and annular three-layer plates subjected to axisymmetric loading. The considered plates consist of three layers: two thin bearing layers and one filler layer, with a perfect bond, assumed for all interfaces. The definition of the stress-strain state in the plates presumes that the Kirchhoff's hypotheses regarding the bearing layers and the Timoshenko's hypothesis (i.e., linear distribution of the tangential displacements over the thickness) concerning the filler layer hold. The performed analyses take into account the characteristics of the elastic (Winkler) foundation. The authors provide the obtained analytical solutions to the formulated boundary value problems. Results obtained by numerical analysis of the stress and the strain distributions for plates supported by hinges on the contour are also presented.

Advanced Geotechnical Engineering

Advanced Geotechnical Engineering
Author: Chandrakant S. Desai,Musharraf Zaman
Publsiher: CRC Press
Total Pages: 638
Release: 2013-11-27
Genre: Technology & Engineering
ISBN: 9781466515611

Download Advanced Geotechnical Engineering Book in PDF, Epub and Kindle

Soil-structure interaction is an area of major importance in geotechnical engineering and geomechanics Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models covers computer and analytical methods for a number of geotechnical problems. It introduces the main factors important to the application of computer

Boundary Element Methods for Soil Structure Interaction

Boundary Element Methods for Soil Structure Interaction
Author: W.S. Hall,G. Oliveto
Publsiher: Springer Science & Business Media
Total Pages: 412
Release: 2007-05-08
Genre: Technology & Engineering
ISBN: 9780306483875

Download Boundary Element Methods for Soil Structure Interaction Book in PDF, Epub and Kindle

W S HALL School of Computing and Mathematics, University of Teesside, Middlesbrough, TS1 3BA UK G OLIVETO Division of Structural Engineering, Department of Civil and Environmental Engineering, University of Catania, Viale A. Doria 6, 95125 Catania, Italy Soil-Structure Interaction is a challenging multidisciplinary subject which covers several areas of Civil Engineering. Virtually every construction is connected to the ground and the interaction between the artefact and the foundation medium may affect considerably both the superstructure and the foundation soil. The Soil-Structure Interaction problem has become an important feature of Structural Engineering with the advent of massive constructions on soft soils such as nuclear power plants, concrete and earth dams. Buildings, bridges, tunnels and underground structures may also require particular attention to be given to the problems of Soil-Structure Interaction. Dynamic Soil-Structure Interaction is prominent in Earthquake Engineering problems. The complexity of the problem, due also to its multidisciplinary nature and to the fact of having to consider bounded and unbounded media of different mechanical characteristics, requires a numerical treatment for any application of engineering significance. The Boundary Element Method appears to be well suited to solve problems of Soil- Structure Interaction through its ability to discretize only the boundaries of complex and often unbounded geometries. Non-linear problems which often arise in Soil-Structure Interaction may also be treated advantageously by a judicious mix of Boundary and Finite Element discretizations.

Modelling of soil structure interaction

Modelling of soil structure interaction
Author: Vladimír Kolář,Ivan Němec
Publsiher: Unknown
Total Pages: 333
Release: 1989
Genre: Electronic Book
ISBN: OCLC:255479953

Download Modelling of soil structure interaction Book in PDF, Epub and Kindle