Differential Equations and Boundary Value Problems

Differential Equations and Boundary Value Problems
Author: Charles Henry Edwards,David E. Penney,David Calvis
Publsiher: Pearson
Total Pages: 0
Release: 2015
Genre: Boundary value problems
ISBN: 0321796985

Download Differential Equations and Boundary Value Problems Book in PDF, Epub and Kindle

Written from the perspective of the applied mathematician, the latest edition of this bestselling book focuses on the theory and practical applications of Differential Equations to engineering and the sciences. Emphasis is placed on the methods of solution, analysis, and approximation. Use of technology, illustrations, and problem sets help readers develop an intuitive understanding of the material. Historical footnotes trace the development of the discipline and identify outstanding individual contributions. This book builds the foundation for anyone who needs to learn differential equations and then progress to more advanced studies.

Ordinary Differential Equations

Ordinary Differential Equations
Author: Charles Roberts
Publsiher: CRC Press
Total Pages: 604
Release: 2011-06-13
Genre: Mathematics
ISBN: 9781439819098

Download Ordinary Differential Equations Book in PDF, Epub and Kindle

In the traditional curriculum, students rarely study nonlinear differential equations and nonlinear systems due to the difficulty or impossibility of computing explicit solutions manually. Although the theory associated with nonlinear systems is advanced, generating a numerical solution with a computer and interpreting that solution are fairly elementary. Bringing the computer into the classroom, Ordinary Differential Equations: Applications, Models, and Computing emphasizes the use of computer software in teaching differential equations. Providing an even balance between theory, computer solution, and application, the text discusses the theorems and applications of the first-order initial value problem, including learning theory models, population growth models, epidemic models, and chemical reactions. It then examines the theory for n-th order linear differential equations and the Laplace transform and its properties, before addressing several linear differential equations with constant coefficients that arise in physical and electrical systems. The author also presents systems of first-order differential equations as well as linear systems with constant coefficients that arise in physical systems, such as coupled spring-mass systems, pendulum systems, the path of an electron, and mixture problems. The final chapter introduces techniques for determining the behavior of solutions to systems of first-order differential equations without first finding the solutions. Designed to be independent of any particular software package, the book includes a CD-ROM with the software used to generate the solutions and graphs for the examples. The appendices contain complete instructions for running the software. A solutions manual is available for qualifying instructors.

Computing Applications to Differential Equations

Computing Applications to Differential Equations
Author: J. M. A. Danby
Publsiher: Unknown
Total Pages: 284
Release: 1985
Genre: Differential equations
ISBN: UOM:39015047547388

Download Computing Applications to Differential Equations Book in PDF, Epub and Kindle

Elementary Differential Equations

Elementary Differential Equations
Author: Charles Roberts
Publsiher: CRC Press
Total Pages: 492
Release: 2018-12-13
Genre: Mathematics
ISBN: 9781498776103

Download Elementary Differential Equations Book in PDF, Epub and Kindle

Elementary Differential Equations, Second Edition is written with the knowledge that there has been a dramatic change in the past century in how solutions to differential equations are calculated. However, the way the topic has been taught in introductory courses has barely changed to reflect these advances, which leaves students at a disadvantage. This second edition has been created to address these changes and help instructors facilitate new teaching methods and the latest tools, which includes computers. The text is designed to help instructors who want to use computers in their classrooms. It accomplishes this by emphasizing and integrating computers in teaching elementary or ordinary differential equations. Many examples and exercises included in the text require the use of computer software to solve problems. It should be noted that since instructors use their own preferred software, this book has been written to be independent of any specific software package. Features: Focuses on numerical methods and computing to generate solutions Features extensive coverage of nonlinear differential equations and nonlinear systems Includes software programs to solve problems in the text which are located on the author's website Contains a wider variety of non-mathematical models than any competing textbook This second edition is a valuable, up-to-date tool for instructors teaching courses about differential equations. It serves as an excellent introductory textbook for undergraduate students majoring in applied mathematics, computer science, various engineering disciplines and other sciences. They also will find that the textbook will aide them greatly in their professional careers because of its instructions on how to use computers to solve equations.

Modelling with Ordinary Differential Equations

Modelling with Ordinary Differential Equations
Author: Alfio Borzì
Publsiher: CRC Press
Total Pages: 339
Release: 2020-04-13
Genre: Mathematics
ISBN: 9781351190374

Download Modelling with Ordinary Differential Equations Book in PDF, Epub and Kindle

Modelling with Ordinary Differential Equations: A Comprehensive Approach aims to provide a broad and self-contained introduction to the mathematical tools necessary to investigate and apply ODE models. The book starts by establishing the existence of solutions in various settings and analysing their stability properties. The next step is to illustrate modelling issues arising in the calculus of variation and optimal control theory that are of interest in many applications. This discussion is continued with an introduction to inverse problems governed by ODE models and to differential games. The book is completed with an illustration of stochastic differential equations and the development of neural networks to solve ODE systems. Many numerical methods are presented to solve the classes of problems discussed in this book. Features: Provides insight into rigorous mathematical issues concerning various topics, while discussing many different models of interest in different disciplines (biology, chemistry, economics, medicine, physics, social sciences, etc.) Suitable for undergraduate and graduate students and as an introduction for researchers in engineering and the sciences Accompanied by codes which allow the reader to apply the numerical methods discussed in this book in those cases where analytical solutions are not available

DIFFERENTIAL EQUATIONS AND BOUNDARY VALUE PROBLEM

DIFFERENTIAL EQUATIONS AND BOUNDARY VALUE PROBLEM
Author: C HENRY. EDWARDS
Publsiher: Unknown
Total Pages: 0
Release: 2022
Genre: Electronic Book
ISBN: 0137540140

Download DIFFERENTIAL EQUATIONS AND BOUNDARY VALUE PROBLEM Book in PDF, Epub and Kindle

Finite Difference Computing with Exponential Decay Models

Finite Difference Computing with Exponential Decay Models
Author: Hans Petter Langtangen
Publsiher: Springer
Total Pages: 210
Release: 2016-06-10
Genre: Computers
ISBN: 9783319294391

Download Finite Difference Computing with Exponential Decay Models Book in PDF, Epub and Kindle

This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular.

Introduction to Computation and Modeling for Differential Equations

Introduction to Computation and Modeling for Differential Equations
Author: Lennart Edsberg
Publsiher: John Wiley & Sons
Total Pages: 285
Release: 2015-10-05
Genre: Mathematics
ISBN: 9781119018445

Download Introduction to Computation and Modeling for Differential Equations Book in PDF, Epub and Kindle

Uses mathematical, numerical, and programming tools to solve differential equations for physical phenomena and engineering problems Introduction to Computation and Modeling for Differential Equations, Second Edition features the essential principles and applications of problem solving across disciplines such as engineering, physics, and chemistry. The Second Edition integrates the science of solving differential equations with mathematical, numerical, and programming tools, specifically with methods involving ordinary differential equations; numerical methods for initial value problems (IVPs); numerical methods for boundary value problems (BVPs); partial differential equations (PDEs); numerical methods for parabolic, elliptic, and hyperbolic PDEs; mathematical modeling with differential equations; numerical solutions; and finite difference and finite element methods. The author features a unique “Five-M” approach: Modeling, Mathematics, Methods, MATLAB®, and Multiphysics, which facilitates a thorough understanding of how models are created and preprocessed mathematically with scaling, classification, and approximation and also demonstrates how a problem is solved numerically using the appropriate mathematical methods. With numerous real-world examples to aid in the visualization of the solutions, Introduction to Computation and Modeling for Differential Equations, Second Edition includes: New sections on topics including variational formulation, the finite element method, examples of discretization, ansatz methods such as Galerkin’s method for BVPs, parabolic and elliptic PDEs, and finite volume methods Numerous practical examples with applications in mechanics, fluid dynamics, solid mechanics, chemical engineering, heat conduction, electromagnetic field theory, and control theory, some of which are solved with computer programs MATLAB and COMSOL Multiphysics® Additional exercises that introduce new methods, projects, and problems to further illustrate possible applications A related website with select solutions to the exercises, as well as the MATLAB data sets for ordinary differential equations (ODEs) and PDEs Introduction to Computation and Modeling for Differential Equations, Second Edition is a useful textbook for upper-undergraduate and graduate-level courses in scientific computing, differential equations, ordinary differential equations, partial differential equations, and numerical methods. The book is also an excellent self-study guide for mathematics, science, computer science, physics, and engineering students, as well as an excellent reference for practitioners and consultants who use differential equations and numerical methods in everyday situations.