Electromagnetic Diffraction Modeling and Simulation with MATLAB

Electromagnetic Diffraction Modeling and Simulation with MATLAB
Author: Gökhan Apaydin,Levent Sevgi
Publsiher: Artech House
Total Pages: 364
Release: 2021-02-28
Genre: Science
ISBN: 9781630817800

Download Electromagnetic Diffraction Modeling and Simulation with MATLAB Book in PDF, Epub and Kindle

This exciting new resource presents a comprehensive introduction to the fundamentals of diffraction of two-dimensional canonical structures, including wedge, strip, and triangular cylinder with different boundary conditions. Maxwell equations are discussed, along with wave equation and scattered, diffracted and fringe fields. Geometric optics, as well as the geometric theory of diffraction are explained. With MATLAB scripts included for several well-known electromagnetic diffraction problems, this book discusses diffraction fundamentals of two-dimensional structures with different boundary conditions and analytical numerical methods that are used to show diffraction. The book introduces fundamental concepts of electromagnetic problems, identities, and definitions for diffraction modeling. Basic coordinate systems, boundary conditions, wave equation, and Green’s function problem are given. The scattered fields, diffracted fields, and fringe fields, radar cross section for diffraction modeling are presented. Behaviors of electromagnetic waves around the two-dimensional canonical wedge and canonical strip are also explored. Diffraction of trilateral cylinders and wedges with rounded edges is investigated as well as double tip diffraction using Finite Difference Time Domain and Method of Moments. A MATLAB based virtual tool, developed with graphical user interface (GUI), for the visualization of both fringe currents and fringe waves is included, using numerical FDTD and MoM algorithm and High-Frequency Asymptotics approaches.

Electromagnetic and Photonic Simulation for the Beginner Finite Difference Frequency Domain in MATLAB

Electromagnetic and Photonic Simulation for the Beginner  Finite Difference Frequency Domain in MATLAB
Author: Raymond C. Rumpf
Publsiher: Artech House
Total Pages: 350
Release: 2022-01-31
Genre: Technology & Engineering
ISBN: 9781630819279

Download Electromagnetic and Photonic Simulation for the Beginner Finite Difference Frequency Domain in MATLAB Book in PDF, Epub and Kindle

This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.

Low Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB

Low Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB
Author: Sergey N. Makarov,Gregory M. Noetscher,Ara Nazarian
Publsiher: John Wiley & Sons
Total Pages: 616
Release: 2015-06-22
Genre: Science
ISBN: 9781119052562

Download Low Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB Book in PDF, Epub and Kindle

Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.

Machine Learning Applications in Electromagnetics and Antenna Array Processing

Machine Learning Applications in Electromagnetics and Antenna Array Processing
Author: Manel Martínez-Ramón,Arjun Gupta,José Luis Rojo-Álvarez,Christos G. Christodoulou
Publsiher: Artech House
Total Pages: 436
Release: 2021-04-30
Genre: Technology & Engineering
ISBN: 9781630817763

Download Machine Learning Applications in Electromagnetics and Antenna Array Processing Book in PDF, Epub and Kindle

This practical resource provides an overview of machine learning (ML) approaches as applied to electromagnetics and antenna array processing. Detailed coverage of the main trends in ML, including uniform and random array processing (beamforming and detection of angle of arrival), antenna optimization, wave propagation, remote sensing, radar, and other aspects of electromagnetic design are explored. An introduction to machine learning principles and the most common machine learning architectures and algorithms used today in electromagnetics and other applications is presented, including basic neural networks, gaussian processes, support vector machines, kernel methods, deep learning, convolutional neural networks, and generative adversarial networks. Applications in electromagnetics and antenna array processing that are solved using machine learning are discussed, including antennas, remote sensing, and target classification.

Electromagnetic Modeling and Simulation

Electromagnetic Modeling and Simulation
Author: Levent Sevgi
Publsiher: John Wiley & Sons
Total Pages: 665
Release: 2014-03-13
Genre: Science
ISBN: 9781118877111

Download Electromagnetic Modeling and Simulation Book in PDF, Epub and Kindle

This unique book presents simple, easy-to-use, but effective short codes as well as virtual tools that can be used by electrical, electronic, communication, and computer engineers in a broad range of electrical engineering problems Electromagnetic modeling is essential to the design and modeling of antenna, radar, satellite, medical imaging, and other applications. In this book, author Levent Sevgi explains techniques for solving real-time complex physical problems using MATLAB-based short scripts and comprehensive virtual tools. Unique in coverage and tutorial approach, Electromagnetic Modeling and Simulation covers fundamental analytical and numerical models that are widely used in teaching, research, and engineering designs—including mode and ray summation approaches with the canonical 2D nonpenetrable parallel plate waveguide as well as FDTD, MoM, and SSPE scripts. The book also establishes an intelligent balance among the essentials of EM MODSIM: The Problem (the physics), The Theory and Models (mathematical background and analytical solutions), and The Simulations (code developing plus validation, verification, and calibration). Classroom tested in graduate-level and short courses, Electromagnetic Modeling and Simulation: Clarifies concepts through numerous worked problems and quizzes provided throughout the book Features valuable MATLAB-based, user-friendly, effective engineering and research virtual design tools Includes sample scenarios and video clips recorded during characteristic simulations that visually impact learning—available on wiley.com Provides readers with their first steps in EM MODSIM as well as tools for medium and high-level code developers and users Electromagnetic Modeling and Simulation thoroughly covers the physics, mathematical background, analytical solutions, and code development of electromagnetic modeling, making it an ideal resource for electrical engineers and researchers.

Electromagnetic and Photonic Simulation for the Beginner

Electromagnetic and Photonic Simulation for the Beginner
Author: RAYMOND C. RUMPF
Publsiher: Artech House Publishers
Total Pages: 350
Release: 2022-01-31
Genre: Electronic Book
ISBN: 1630819263

Download Electromagnetic and Photonic Simulation for the Beginner Book in PDF, Epub and Kindle

This forward-thinking book presents the finite-difference frequency-domain (FDFD) method. FDFD is the frequency-domain relative of the finite-difference time-domain (FDTD) method used for simulating electromagnetic and photonic devices. Special techniques in MATLAB(R) are presented that will allow readers to write their own FDFD programs, as well as review key concepts in electromagnetics. Guided modes in waveguides, photonic band diagrams, and isofrequency contours of periodic structures are explored. Readers learn how to simulate waves through diffraction gratings, beams through photonic crystals, and optical integrated circuits, as well as how to modify FDFD to easily perform parameter sweeps, such as plotting reflection and transmission through a device as a function of frequency. The book includes all of the required MATLAB codes and a detailed explanation of the programs to explain how to simulate devices in the real world.

Electromagnetics for Engineers Volume 1 Electrostatics and Magnetostatics

Electromagnetics for Engineers Volume 1  Electrostatics and Magnetostatics
Author: Dean James Friesen
Publsiher: Artech House
Total Pages: 249
Release: 2023-12-31
Genre: Science
ISBN: 9781685690069

Download Electromagnetics for Engineers Volume 1 Electrostatics and Magnetostatics Book in PDF, Epub and Kindle

Electromagnetism for Engineers, VOL. I: Electrostatics is a comprehensive introduction to the fundamental principles of electromagnetism, making it an indispensable source for a wide range of readers. This volume covers the essential concepts of electrostatics, including Coulomb's law, electric fields, Gauss's law, and vector mathematics, which forms a foundational tool throughout the book. What sets this book apart are the numerous illustrations and diagrams that visually elucidate complex topics, ensuring a clear and thorough understanding. To reinforce learning, the text includes problem and solution sets, giving readers an opportunity to apply the concepts they have acquired. This book is particularly valuable for college graduates and engineering students who are beginning their journey into the realm of electromagnetism. It is also an excellent reference for practicing engineers seeking to refresh their knowledge of the basic principles of electromagnetism. With a focus on both theory and practical application, this volume provides a strong foundation for readers at various stages of their engineering education and career.

Electromagnetic Waves Materials and Computation with MATLAB

Electromagnetic Waves  Materials  and Computation with MATLAB
Author: Dikshitulu K. Kalluri
Publsiher: CRC Press
Total Pages: 862
Release: 2016-04-19
Genre: Technology & Engineering
ISBN: 9781439838686

Download Electromagnetic Waves Materials and Computation with MATLAB Book in PDF, Epub and Kindle

Readily available commercial software enables engineers and students to perform routine calculations and design without necessarily having a sufficient conceptual understanding of the anticipated solution. The software is so user-friendly that it usually produces a beautiful colored visualization of that solution, often camouflaging the fact that t