Electromagnetics for Engineering Students Part 2

Electromagnetics for Engineering Students  Part 2
Author: Sameir M. Ali Hamed
Publsiher: Bentham Science Publishers
Total Pages: 475
Release: 2018-04-09
Genre: Technology & Engineering
ISBN: 9781681086316

Download Electromagnetics for Engineering Students Part 2 Book in PDF, Epub and Kindle

Electromagmetics for Engineering Students is a textbook in two parts, Part I and II, that cover all topics of electromagnetics needed for undergraduate students from vector analysis to antenna principles. In both parts of the book, the topics are presented in sufficient details such that the students will follow the analytical development easily. Each chapter is supported by many illustrative examples, solved problems, and the end of chapter problems to explain the principles of the topics and enhance the knowledge of the student. There are a total of 681 problems in the both parts of the book as follows: 162 illustrative examples, 88 solved problems, and 431 end of chapter problems. This part is a continuation of Part I and focuses on the application of Maxwell's equations and the concepts that are covered in Part I to analyze the characteristics of wave propagation in half-space and bounded media including metamaterials. Moreover, a chapter has been devoted to the topic of antennas to provide readers with the fundamental concepts related to antenna engineering. The key features of this part: • In addition to the coverage of classical topics in electromagnetic normally covered in the similar available texts, this part of the book adds some advanced concepts and topics such as: • Application of multi-pole expansion for vector potentials. • More detailed analysis on the topic of waveguides including circular waveguides. • Refraction through metamaterials and the concept of negative refractive index. • Detailed and easy-to follow presentation of mathematical analyses and problems. • An appendix of mathematical formulae and functions.

Electromagnetics for Engineering Students

Electromagnetics for Engineering Students
Author: Sameir M. Ali Hamed
Publsiher: Unknown
Total Pages: 980
Release: 2017-09-21
Genre: Electronic Book
ISBN: 1681085054

Download Electromagnetics for Engineering Students Book in PDF, Epub and Kindle

Electromagnetics for Engineering Students starts with an introduction to vector analysis and progressive chapters provide readers with information about dielectric materials, electrostatic and magnetostatic fields, as well as wave propagation in different situations. Each chapter is supported by many illustrative examples and solved problems which serve to explain the principles of the topics and enhance the knowledge of students. In addition to the coverage of classical topics in electromagnetics, the book explains advanced concepts and topics such as the application of multi-pole expansion for scalar and vector potentials, boundary-value problems in cylindrical and spherical coordinate systems, metamaterials, artificial magnetic conductors, the concept of negative refractive index, and the detailed analysis of circular waveguides.Key features of this text book include:detailed and easy-to follow presentation of mathematical analyses and problemsa total of 681 problems (162 illustrative examples, 88 solved problems, and 431 end of chapter problems)an appendix of mathematical formulae and functionsElectromagnetics for Engineering Students is an ideal text book for undergraduate engineering students who are learning about electromagnetics and related mathematical theorems.

Electromagnetics

Electromagnetics
Author: Steven Ellingson
Publsiher: Unknown
Total Pages: 135
Release: 2019-12-13
Genre: Electronic Book
ISBN: 1949373916

Download Electromagnetics Book in PDF, Epub and Kindle

Electromagnetics

Electromagnetics
Author: Edward J. Rothwell,Michael J. Cloud
Publsiher: CRC Press
Total Pages: 560
Release: 2001-02-21
Genre: Technology & Engineering
ISBN: 084931397X

Download Electromagnetics Book in PDF, Epub and Kindle

Between a first undergraduate course in electromagnetism (EM) and the advanced graduate course lies a middle ground that is essential to engineering students yet virtually ignored by most curricula. It is the transition from the basic, more superficial treatments to the sharply focused graduate studies that solidifies students' understanding of EM fundamentals before they move on to a specialized area of research. And it is here that academia-and practitioners still uneasy about the fundamentals-have lacked the appropriate "intermediate" text. Electromagnetics provides that transition. Emphasizing concepts over problem-solving techniques, it focuses on the topics most important to EM research and those most troublesome to beginning graduate students. In Part I, the authors cover the required mathematics background and introduce the primary physical principles. From a well-posed postulate, Part II builds a complete description of the EM field in free space, and Part III completes the study by investigating the behavior of the EM field in a variety of materials. Stressing both a physical understanding and a detailed mathematical description of each topic, this text provides an account of EM theory that is in-depth, lucid, and accessible. Highly engaging prose, clear, concise explanations, and numerous examples relating concepts to modern engineering applications create a comfortable atmosphere that enhances the reader's grasp of the material. Electromagnetics thus builds a foundation that allows readers to proceed with confidence to advanced EM studies, research, and applications.

Engineering Electromagnetics

Engineering Electromagnetics
Author: Nathan Ida
Publsiher: Springer
Total Pages: 1062
Release: 2015-03-20
Genre: Technology & Engineering
ISBN: 9783319078069

Download Engineering Electromagnetics Book in PDF, Epub and Kindle

This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: modifications to about 30-40% of the end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The wealth of examples and alternative explanations makes it very approachable by students. More than 400 examples and exercises, exercising every topic in the book Includes 600 end-of-chapter problems, many of them applications or simplified applications Discusses the finite element, finite difference and method of moments in a dedicated chapter

Theory and Computation of Electromagnetic Fields

Theory and Computation of Electromagnetic Fields
Author: Jian-Ming Jin
Publsiher: John Wiley & Sons
Total Pages: 744
Release: 2015-08-10
Genre: Science
ISBN: 9781119108085

Download Theory and Computation of Electromagnetic Fields Book in PDF, Epub and Kindle

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Fundamentals of Electromagnetics 2

Fundamentals of Electromagnetics 2
Author: David Voltmer
Publsiher: Springer Nature
Total Pages: 185
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 9783031017001

Download Fundamentals of Electromagnetics 2 Book in PDF, Epub and Kindle

This book is the second of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 2: Quasistatics and Waves examines how the low-frequency models of lumped elements are modified to include parasitic elements. For even higher frequencies, wave behavior in space and on transmission lines is explained. Finally, the textbook concludes with details of transmission line properties and applications. Upon completion of this book and its companion Fundamentals of Electromagnetics Vol 1: Internal Behavior of Lumped Elements, with a focus on the DC and low-frequency behavior of electromagnetic fields within lumped elements, students will have gained the necessary knowledge to progress to advanced studies of electromagnetics.

Introduction to Engineering Electromagnetics

Introduction to Engineering Electromagnetics
Author: Yeon Ho Lee
Publsiher: Springer Science & Business Media
Total Pages: 570
Release: 2013-03-26
Genre: Technology & Engineering
ISBN: 9783642361180

Download Introduction to Engineering Electromagnetics Book in PDF, Epub and Kindle

This text provides students with the missing link that can help them master the basic principles of electromagnetics. The concept of vector fields is introduced by starting with clear definitions of position, distance, and base vectors. The symmetries of typical configurations are discussed in detail, including cylindrical, spherical, translational, and two-fold rotational symmetries. To avoid serious confusion between symbols with two indices, the text adopts a new notation: a letter with subscript 1-2 for the work done in moving a unit charge from point 2 to point 1, in which the subscript 1-2 mimics the difference in potentials, while the hyphen implies a sense of backward direction, from 2 to 1. This text includes 300 figures in which real data are drawn to scale. Many figures provide a three-dimensional view. Each subsection includes a number of examples that are solved by examining rigorous approaches in steps. Each subsection ends with straightforward exercises and answers through which students can check if they correctly understood the concepts. A total 350 examples and exercises are provided. At the end of each section, review questions are inserted to point out key concepts and relations discussed in the section. They are given with hints referring to the related equations and figures. The book contains a total of 280 end-of-chapter problems.