Emerging Memories

Emerging Memories
Author: Betty Prince
Publsiher: Springer Science & Business Media
Total Pages: 280
Release: 2007-05-08
Genre: Technology & Engineering
ISBN: 9780306475535

Download Emerging Memories Book in PDF, Epub and Kindle

Emerging Memories: Technologies and Trends attempts to provide background and a description of the basic technology, function and properties of emerging as well as discussing potentially suitable applications. This book explores a range of new memory products and technologies. The concept for some of these memories has been around for years. A few completely new. Some involve materials that have been in volume production in other type of devices for some time. Ferro-electrics, for example, have been used in capacitors for more than 30 years. In addition to looking at using known devices and materials in novel ways, there are new technologies being investigated such as DNA memories, light memories, molecular memories, and carbon nanotube memories, as well as the new polymer memories which hold the potential for the significant manufacturing reduction. Emerging Memories: Technologies and Trends is a useful reference for the professional engineer in the semiconductor industry.

Emerging Non Volatile Memories

Emerging Non Volatile Memories
Author: Seungbum Hong,Orlando Auciello,Dirk Wouters
Publsiher: Springer
Total Pages: 280
Release: 2014-11-18
Genre: Technology & Engineering
ISBN: 9781489975379

Download Emerging Non Volatile Memories Book in PDF, Epub and Kindle

This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers’ understanding of future trends in non-volatile memories.

Charge Trapping Non Volatile Memories

Charge Trapping Non Volatile Memories
Author: Panagiotis Dimitrakis
Publsiher: Springer
Total Pages: 211
Release: 2015-08-05
Genre: Technology & Engineering
ISBN: 9783319152905

Download Charge Trapping Non Volatile Memories Book in PDF, Epub and Kindle

This book describes the basic technologies and operation principles of charge-trapping non-volatile memories. The authors explain the device physics of each device architecture and provide a concrete description of the materials involved as well as the fundamental properties of the technology. Modern material properties used as charge-trapping layers, for new applications are introduced.

Flash Memories

Flash Memories
Author: Detlev Richter
Publsiher: Springer Science & Business Media
Total Pages: 268
Release: 2013-09-12
Genre: Technology & Engineering
ISBN: 9789400760820

Download Flash Memories Book in PDF, Epub and Kindle

The subject of this book is to introduce a model-based quantitative performance indicator methodology applicable for performance, cost and reliability optimization of non-volatile memories. The complex example of flash memories is used to introduce and apply the methodology. It has been developed by the author based on an industrial 2-bit to 4-bit per cell flash development project. For the first time, design and cost aspects of 3D integration of flash memory are treated in this book. Cell, array, performance and reliability effects of flash memories are introduced and analyzed. Key performance parameters are derived to handle the flash complexity. A performance and array memory model is developed and a set of performance indicators characterizing architecture, cost and durability is defined. Flash memories are selected to apply the Performance Indicator Methodology to quantify design and technology innovation. A graphical representation based on trend lines is introduced to support a requirement based product development process. The Performance Indicator methodology is applied to demonstrate the importance of hidden memory parameters for a successful product and system development roadmap. Flash Memories offers an opportunity to enhance your understanding of product development key topics such as: · Reliability optimization of flash memories is all about threshold voltage margin understanding and definition; · Product performance parameter are analyzed in-depth in all aspects in relation to the threshold voltage operation window; · Technical characteristics are translated into quantitative performance indicators; · Performance indicators are applied to identify and quantify product and technology innovation within adjacent areas to fulfill the application requirements with an overall cost optimized solution; · Cost, density, performance and durability values are combined into a common factor – performance indicator - which fulfills the application requirements

Semiconductor Memories and Systems

Semiconductor Memories and Systems
Author: Andrea Redaelli,Fabio Pellizzer
Publsiher: Woodhead Publishing
Total Pages: 364
Release: 2022-06-07
Genre: Technology & Engineering
ISBN: 9780128209462

Download Semiconductor Memories and Systems Book in PDF, Epub and Kindle

Semiconductor Memories and Systems provides a comprehensive overview of the current state of semiconductor memory at the technology and system levels. After an introduction on market trends and memory applications, the book focuses on mainstream technologies, illustrating their current status, challenges and opportunities, with special attention paid to scalability paths. Technologies discussed include static random access memory (SRAM), dynamic random access memory (DRAM), non-volatile memory (NVM), and NAND flash memory. Embedded memory and requirements and system level needs for storage class memory are also addressed. Each chapter covers physical operating mechanisms, fabrication technologies, and the main challenges to scalability. Finally, the work reviews the emerging trends for storage class memory, mainly focusing on the advantages and opportunities of phase change based memory technologies. Features contributions from experts from leading companies in semiconductor memory Discusses physical operating mechanisms, fabrication technologies and paths to scalability for current and emerging semiconductor memories Reviews primary memory technologies, including SRAM, DRAM, NVM and NAND flash memory Includes emerging storage class memory technologies such as phase change memory

Non volatile Memories

Non volatile Memories
Author: Pierre-Camille Lacaze,Jean-Claude Lacroix
Publsiher: John Wiley & Sons
Total Pages: 135
Release: 2014-12-02
Genre: Technology & Engineering
ISBN: 9781118790120

Download Non volatile Memories Book in PDF, Epub and Kindle

Written for scientists, researchers, and engineers, Non-volatile Memories describes the recent research and implementations in relation to the design of a new generation of non-volatile electronic memories. The objective is to replace existing memories (DRAM, SRAM, EEPROM, Flash, etc.) with a universal memory model likely to reach better performances than the current types of memory: extremely high commutation speeds, high implantation densities and retention time of information of about ten years.

Rad hard Semiconductor Memories

Rad hard Semiconductor Memories
Author: Calligaro, Cristiano,Gatti, Umberto
Publsiher: River Publishers
Total Pages: 418
Release: 2019-01-30
Genre: Technology & Engineering
ISBN: 9788770220200

Download Rad hard Semiconductor Memories Book in PDF, Epub and Kindle

Rad-hard Semiconductor Memories is intended for researchers and professionals interested in understanding how to design and make a preliminary evaluation of rad-hard semiconductor memories, making leverage on standard CMOS manufacturing processes available from different silicon foundries and using different technology nodes. In the first part of the book, a preliminary overview of the effects of radiation in space, with a specific focus on memories, will be conducted to enable the reader to understand why specific design solutions are adopted to mitigate hard and soft errors. The second part will be devoted to RHBD (Radiation Hardening by Design) techniques for semiconductor components with a specific focus on memories. The approach will follow a top-down scheme starting from RHBD at architectural level (how to build a rad-hard floor-plan), at circuit level (how to mitigate radiation effects by handling transistors in the proper way) and at layout level (how to shape a layout to mitigate radiation effects). After the description of the mitigation techniques, the book enters in the core of the topic covering SRAMs (synchronous, asynchronous, single port and dual port) and PROMs (based on AntiFuse OTP technologies), describing how to design a rad-hard flash memory and fostering RHBD toward emerging memories like ReRAM. The last part will be a leap into emerging memories at a very early stage, not yet ready for industrial use in silicon but candidates to become an option for the next wave of rad-hard components. Technical topics discussed in the book include: Radiation effects on semiconductor components (TID, SEE)Radiation Hardening by Design (RHBD) TechniquesRad-hard SRAMsRad-hard PROMsRad-hard Flash NVMsRad-hard ReRAMsRad-hard emerging technologies

Embedded Memories for Nano Scale VLSIs

Embedded Memories for Nano Scale VLSIs
Author: Kevin Zhang
Publsiher: Springer Science & Business Media
Total Pages: 390
Release: 2009-04-21
Genre: Technology & Engineering
ISBN: 9780387884974

Download Embedded Memories for Nano Scale VLSIs Book in PDF, Epub and Kindle

Kevin Zhang Advancement of semiconductor technology has driven the rapid growth of very large scale integrated (VLSI) systems for increasingly broad applications, incl- ing high-end and mobile computing, consumer electronics such as 3D gaming, multi-function or smart phone, and various set-top players and ubiquitous sensor and medical devices. To meet the increasing demand for higher performance and lower power consumption in many different system applications, it is often required to have a large amount of on-die or embedded memory to support the need of data bandwidth in a system. The varieties of embedded memory in a given system have alsobecome increasingly more complex, ranging fromstatictodynamic and volatile to nonvolatile. Among embedded memories, six-transistor (6T)-based static random access memory (SRAM) continues to play a pivotal role in nearly all VLSI systems due to its superior speed and full compatibility with logic process technology. But as the technology scaling continues, SRAM design is facing severe challenge in mainta- ing suf?cient cell stability margin under relentless area scaling. Meanwhile, rapid expansion in mobile application, including new emerging application in sensor and medical devices, requires far more aggressive voltage scaling to meet very str- gent power constraint. Many innovative circuit topologies and techniques have been extensively explored in recent years to address these challenges.