Finite Element Method to Model Electromagnetic Systems in Low Frequency

Finite Element Method to Model Electromagnetic Systems in Low Frequency
Author: Francis Piriou,Stephane Clenet
Publsiher: John Wiley & Sons
Total Pages: 324
Release: 2024-04-02
Genre: Science
ISBN: 9781786308115

Download Finite Element Method to Model Electromagnetic Systems in Low Frequency Book in PDF, Epub and Kindle

Numerical modeling now plays a central role in the design and study of electromagnetic systems. In the field of devices operating in low frequency, it is the finite element method that has come to the fore in recent decades. Today, it is widely used by engineers and researchers in industry, as well as in research centers. This book describes in detail all the steps required to discretize Maxwell’s equations using the finite element method. This involves progressing from the basic equations in the continuous domain to equations in the discrete domain that are solved by a computer. This approach is carried out with a constant focus on maintaining a link between physics, i.e. the properties of electromagnetic fields, and numerical analysis. Numerous academic examples, which are used throughout the various stages of model construction, help to clarify the developments.

Finite Element Method to Model Electromagnetic Systems in Low Frequency

Finite Element Method to Model Electromagnetic Systems in Low Frequency
Author: Francis Piriou,Stephane Clenet
Publsiher: John Wiley & Sons
Total Pages: 243
Release: 2024-02-23
Genre: Science
ISBN: 9781394276479

Download Finite Element Method to Model Electromagnetic Systems in Low Frequency Book in PDF, Epub and Kindle

Numerical modeling now plays a central role in the design and study of electromagnetic systems. In the field of devices operating in low frequency, it is the finite element method that has come to the fore in recent decades. Today, it is widely used by engineers and researchers in industry, as well as in research centers. This book describes in detail all the steps required to discretize Maxwell’s equations using the finite element method. This involves progressing from the basic equations in the continuous domain to equations in the discrete domain that are solved by a computer. This approach is carried out with a constant focus on maintaining a link between physics, i.e. the properties of electromagnetic fields, and numerical analysis. Numerous academic examples, which are used throughout the various stages of model construction, help to clarify the developments.

Electromagnetic Modeling by Finite Element Methods

Electromagnetic Modeling by Finite Element Methods
Author: João Pedro A. Bastos,Nelson Sadowski
Publsiher: CRC Press
Total Pages: 510
Release: 2003-04-01
Genre: Technology & Engineering
ISBN: 9780203911174

Download Electromagnetic Modeling by Finite Element Methods Book in PDF, Epub and Kindle

Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the elect

The Finite Element Method in Electromagnetics

The Finite Element Method in Electromagnetics
Author: Jian-Ming Jin
Publsiher: John Wiley & Sons
Total Pages: 800
Release: 2015-02-18
Genre: Science
ISBN: 9781118842027

Download The Finite Element Method in Electromagnetics Book in PDF, Epub and Kindle

A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Magnetic Materials and 3D Finite Element Modeling

Magnetic Materials and 3D Finite Element Modeling
Author: João Pedro A. Bastos,Nelson Sadowski
Publsiher: CRC Press
Total Pages: 396
Release: 2017-04-28
Genre: Technology & Engineering
ISBN: 9781466592520

Download Magnetic Materials and 3D Finite Element Modeling Book in PDF, Epub and Kindle

Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes. • Furnishes algorithms in computational language • Summarizes concepts related to the FE method • Uses classical algebra to present the method, making it easily accessible to engineers Written in an easy-to-understand tutorial format, the text begins with a short presentation of Maxwell’s equations, discusses the generation mechanism of iron losses, and introduces their static and dynamic components. It then demonstrates simplified models for the hysteresis phenomena under alternating magnetic fields. The book also focuses on the Preisach and Jiles–Atherton models, discusses vector hysterisis modeling, introduces the FE technique, and presents nodal and edge elements applied to 3D FE formulation connected to the hysteretic phenomena. The book discusses the concept of source-field for magnetostatic cases, magnetodynamic fields, eddy currents, and anisotropy. It also explores the need for more sophisticated coding, and presents techniques for solving linear systems generated by the FE cases while considering advantages and drawbacks.

Low Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB

Low Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB
Author: Sergey N. Makarov,Gregory M. Noetscher,Ara Nazarian
Publsiher: John Wiley & Sons
Total Pages: 616
Release: 2015-06-22
Genre: Science
ISBN: 9781119052562

Download Low Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB Book in PDF, Epub and Kindle

Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.

Integral Methods in Low Frequency Electromagnetics

Integral Methods in Low Frequency Electromagnetics
Author: Pavel Solin,Ivo Dolezel,Pavel Karban,Bohus Ulrych
Publsiher: John Wiley & Sons
Total Pages: 418
Release: 2009-08-11
Genre: Computers
ISBN: 9780470502723

Download Integral Methods in Low Frequency Electromagnetics Book in PDF, Epub and Kindle

A modern presentation of integral methods in low-frequency electromagnetics This book provides state-of-the-art knowledge on integral methods in low-frequency electromagnetics. Blending theory with numerous examples, it introduces key aspects of the integral methods used in engineering as a powerful alternative to PDE-based models. Readers will get complete coverage of: The electromagnetic field and its basic characteristics An overview of solution methods Solutions of electromagnetic fields by integral expressions Integral and integrodifferential methods Indirect solutions of electromagnetic fields by the boundary element method Integral equations in the solution of selected coupled problems Numerical methods for integral equations All computations presented in the book are done by means of the authors' own codes, and a significant amount of their own results is included. At the book's end, they also discuss novel integral techniques of a higher order of accuracy, which are representative of the future of this rapidly advancing field. Integral Methods in Low-Frequency Electromagnetics is of immense interest to members of the electrical engineering and applied mathematics communities, ranging from graduate students and PhD candidates to researchers in academia and practitioners in industry.

The Finite Element Method for Electromagnetic Modeling

The Finite Element Method for Electromagnetic Modeling
Author: Gerard Meunier
Publsiher: Iste Publishing Company
Total Pages: 0
Release: 2008
Genre: Electromagnetic devices
ISBN: 1905209649

Download The Finite Element Method for Electromagnetic Modeling Book in PDF, Epub and Kindle

Written by specialists of modeling in electromagnetism, this resource provides a comprehensive review of the finite element method for low frequency applications. The fundamentals of this method and latest advances in the field are described in detail through topics such as macroscopic behavior laws of materials, magneto-thermal coupling for induction heating, and how Maxwell equations are derived from thermodynamic principles.