Finite Element Modeling Methods for Photonics

Finite Element Modeling Methods for Photonics
Author: B. M. Azizur Rahman
Publsiher: Unknown
Total Pages: 265
Release: 2013
Genre: Finite element method
ISBN: 1523117206

Download Finite Element Modeling Methods for Photonics Book in PDF, Epub and Kindle

The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astron.

Finite Element Modeling Methods for Photonics

Finite Element Modeling Methods for Photonics
Author: B. M. Azizur Rahman ,Arti Agrawal
Publsiher: Artech House
Total Pages: 265
Release: 2013-08-01
Genre: Technology & Engineering
ISBN: 9781608075317

Download Finite Element Modeling Methods for Photonics Book in PDF, Epub and Kindle

The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astronomy, and sensing, to chemistry, imaging, and biomedical R&D. This book emphasizes practical, problem-solving applications and includes real-world examples to assist readers in understanding how mathematical concepts translate to computer code for finite element-based methods applicable to a range of photonic structures. In addition, this is the perfect support to anyone using the COMSOL Multiphysics© RF Module.

Numerical Methods in Photonics

Numerical Methods in Photonics
Author: Andrei V. Lavrinenko,Jesper Lægsgaard,Niels Gregersen,Frank Schmidt,Thomas Søndergaard
Publsiher: CRC Press
Total Pages: 206
Release: 2018-09-03
Genre: Science
ISBN: 9781351832007

Download Numerical Methods in Photonics Book in PDF, Epub and Kindle

Simulation and modeling using numerical methods is one of the key instruments in any scientific work. In the field of photonics, a wide range of numerical methods are used for studying both fundamental optics and applications such as design, development, and optimization of photonic components. Modeling is key for developing improved photonic devices and reducing development time and cost. Choosing the appropriate computational method for a photonics modeling problem requires a clear understanding of the pros and cons of the available numerical methods. Numerical Methods in Photonics presents six of the most frequently used methods: FDTD, FDFD, 1+1D nonlinear propagation, modal method, Green’s function, and FEM. After an introductory chapter outlining the basics of Maxwell’s equations, the book includes self-contained chapters that focus on each of the methods. Each method is accompanied by a review of the mathematical principles in which it is based, along with sample scripts, illustrative examples of characteristic problem solving, and exercises. MATLAB® is used throughout the text. This book provides a solid basis to practice writing your own codes. The theoretical formulation is complemented by sets of exercises, which allow you to grasp the essence of the modeling tools.

The Finite Element Method in Electromagnetics

The Finite Element Method in Electromagnetics
Author: Jian-Ming Jin
Publsiher: John Wiley & Sons
Total Pages: 800
Release: 2015-02-18
Genre: Science
ISBN: 9781118842027

Download The Finite Element Method in Electromagnetics Book in PDF, Epub and Kindle

A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Recent Trends in Computational Photonics

Recent Trends in Computational Photonics
Author: Arti Agrawal,Trevor Benson,Richard M. De La Rue,Gregory A. Wurtz
Publsiher: Springer
Total Pages: 405
Release: 2017-11-01
Genre: Science
ISBN: 9783319554389

Download Recent Trends in Computational Photonics Book in PDF, Epub and Kindle

This book brings together the recent cutting-edge work on computational methods in photonics and their applications. The latest advances in techniques such as the Discontinuous Galerkin Time Domain method, Finite Element Time Domain method, Finite Difference Time Domain method as well as their applications are presented. Key aspects such as modelling of non-linear effects (Second Harmonic Generation, lasing in fibers, including gain nonlinearity in metamaterials), the acousto-optic effect, and the hydrodynamic model to explain electron response in nanoplasmonic structures are included. The application areas covered include plasmonics, metamaterials, photonic crystals, dielectric waveguides, fiber lasers. The chapters give a representative survey of the corresponding area.

Photonics Modelling and Design

Photonics Modelling and Design
Author: Slawomir Sujecki
Publsiher: CRC Press
Total Pages: 410
Release: 2018-09-03
Genre: Science
ISBN: 9781466561274

Download Photonics Modelling and Design Book in PDF, Epub and Kindle

Photonics Modeling and Design delivers a concise introduction to the modeling and design of photonic devices. Assuming a general knowledge of photonics and the operating principles of fibre and semiconductor lasers, this book: Describes the analysis of the light propagation in dielectric media Discusses heat diffusion and carrier transport Applies the presented theory to develop fibre and semiconductor laser models Addresses the propagation of short optical pulses in optical fibres Puts all modeling into practical context with examples of devices currently in development or on the market Providing hands-on guidance in the form of MATLAB® scripts, tips, and other downloadable content, Photonics Modeling and Design is written for students and professionals interested in modeling photonic devices either for gaining a deeper understanding of the operation or to optimize the design.

Finite Element Methods for Nonlinear Optical Waveguides

Finite Element Methods for Nonlinear Optical Waveguides
Author: Xin-Hua Wang
Publsiher: Routledge
Total Pages: 292
Release: 2019-06-14
Genre: Technology & Engineering
ISBN: 9781351448581

Download Finite Element Methods for Nonlinear Optical Waveguides Book in PDF, Epub and Kindle

This book provides researchers at the forefront of nonlinear optical technologies with robust procedures and software for the systematic investigation of the fundamental phenomena in nonlinear optical waveguide structures. A full vectorial electromagnetic formulation is adopted and the conditions under which simplification to a scalar formulation is possible are clearly indicated. The need to model the dielectric saturation properly is identified, and improved algorithms are presented for obtaining the complete power dispersion curve of structures exhibiting bistability. As the stability analysis of nonlinear modes is crucial to the development of nonlinear model methods, an effective procedure to investigate the propagation of the scalar nonlinear waves in 3D is another important feature of the book. All of the procedures described, as well as an automatic mesh generator for the finite element method, are incorporated into a software package which is included with this book.

Computational Finite Element Methods in Nanotechnology

Computational Finite Element Methods in Nanotechnology
Author: Sarhan M. Musa
Publsiher: CRC Press
Total Pages: 640
Release: 2017-12-19
Genre: Science
ISBN: 9781439893265

Download Computational Finite Element Methods in Nanotechnology Book in PDF, Epub and Kindle

Computational Finite Element Methods in Nanotechnology demonstrates the capabilities of finite element methods in nanotechnology for a range of fields. Bringing together contributions from researchers around the world, it covers key concepts as well as cutting-edge research and applications to inspire new developments and future interdisciplinary research. In particular, it emphasizes the importance of finite element methods (FEMs) for computational tools in the development of efficient nanoscale systems. The book explores a variety of topics, including: A novel FE-based thermo-electrical-mechanical-coupled model to study mechanical stress, temperature, and electric fields in nano- and microelectronics The integration of distributed element, lumped element, and system-level methods for the design, modeling, and simulation of nano- and micro-electromechanical systems (N/MEMS) Challenges in the simulation of nanorobotic systems and macro-dimensions The simulation of structures and processes such as dislocations, growth of epitaxial films, and precipitation Modeling of self-positioning nanostructures, nanocomposites, and carbon nanotubes and their composites Progress in using FEM to analyze the electric field formed in needleless electrospinning How molecular dynamic (MD) simulations can be integrated into the FEM Applications of finite element analysis in nanomaterials and systems used in medicine, dentistry, biotechnology, and other areas The book includes numerous examples and case studies, as well as recent applications of microscale and nanoscale modeling systems with FEMs using COMSOL Multiphysics® and MATLAB®. A one-stop reference for professionals, researchers, and students, this is also an accessible introduction to computational FEMs in nanotechnology for those new to the field.