Functional Differential Geometry

Functional Differential Geometry
Author: Gerald Jay Sussman,Jack Wisdom
Publsiher: MIT Press
Total Pages: 249
Release: 2013-07-05
Genre: Mathematics
ISBN: 9780262315616

Download Functional Differential Geometry Book in PDF, Epub and Kindle

An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.

Functional Differential Geometry

Functional Differential Geometry
Author: Gerald Jay Sussman,Jack Wisdom
Publsiher: MIT Press
Total Pages: 249
Release: 2013-07-05
Genre: Mathematics
ISBN: 9780262019347

Download Functional Differential Geometry Book in PDF, Epub and Kindle

An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.

Natural Operations in Differential Geometry

Natural Operations in Differential Geometry
Author: Ivan Kolar,Peter W. Michor,Jan Slovak
Publsiher: Springer Science & Business Media
Total Pages: 450
Release: 1993-01-22
Genre: Computers
ISBN: 3540562354

Download Natural Operations in Differential Geometry Book in PDF, Epub and Kindle

The literature on natural bundles and natural operators in differential geometry, was until now, scattered in the mathematical journal literature. This book is the first monograph on the subject, collecting this material in a unified presentation. The book begins with an introduction to differential geometry stressing naturality and functionality, and the general theory of connections on arbitrary fibered manifolds. The functional approach to classical natural bundles is extended to a large class of geometrically interesting categories. Several methods of finding all natural operators are given and these are identified for many concrete geometric problems. After reduction each problem to a finite order setting, the remaining discussion is based on properties of jet spaces, and the basic structures from the theory of jets are therefore described here too in a self-contained manner. The relations of these geometric problems to corresponding questions in mathematical physics are brought out in several places in the book, and it closes with a very comprehensive bibliography of over 300 items. This book is a timely addition to literature filling the gap that existed here and will be a standard reference on natural operators for the next few years.

Partial Differential Equations 2

Partial Differential Equations 2
Author: Friedrich Sauvigny
Publsiher: Springer Science & Business Media
Total Pages: 401
Release: 2006-10-11
Genre: Mathematics
ISBN: 9783540344629

Download Partial Differential Equations 2 Book in PDF, Epub and Kindle

This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.

Aspects of Differential Geometry I

Aspects of Differential Geometry I
Author: Peter Gilkey,JeongHyeong Park,Ramón Vázquez-Lorenzo
Publsiher: Springer Nature
Total Pages: 140
Release: 2022-05-31
Genre: Mathematics
ISBN: 9783031024078

Download Aspects of Differential Geometry I Book in PDF, Epub and Kindle

Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. In Book I, we focus on preliminaries. Chapter 1 provides an introduction to multivariable calculus and treats the Inverse Function Theorem, Implicit Function Theorem, the theory of the Riemann Integral, and the Change of Variable Theorem. Chapter 2 treats smooth manifolds, the tangent and cotangent bundles, and Stokes' Theorem. Chapter 3 is an introduction to Riemannian geometry. The Levi-Civita connection is presented, geodesics introduced, the Jacobi operator is discussed, and the Gauss-Bonnet Theorem is proved. The material is appropriate for an undergraduate course in the subject. We have given some different proofs than those that are classically given and there is some new material in these volumes. For example, the treatment of the Chern-Gauss-Bonnet Theorem for pseudo-Riemannian manifolds with boundary is new. Table of Contents: Preface / Acknowledgments / Basic Notions and Concepts / Manifolds / Riemannian and Pseudo-Riemannian Geometry / Bibliography / Authors' Biographies / Index

Functional Analysis Sobolev Spaces and Partial Differential Equations

Functional Analysis  Sobolev Spaces and Partial Differential Equations
Author: Haim Brezis
Publsiher: Springer Science & Business Media
Total Pages: 600
Release: 2010-11-02
Genre: Mathematics
ISBN: 9780387709147

Download Functional Analysis Sobolev Spaces and Partial Differential Equations Book in PDF, Epub and Kindle

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Introduction to Differential Geometry

Introduction to Differential Geometry
Author: Joel W. Robbin,Dietmar A. Salamon
Publsiher: Springer Nature
Total Pages: 426
Release: 2022-01-12
Genre: Mathematics
ISBN: 9783662643402

Download Introduction to Differential Geometry Book in PDF, Epub and Kindle

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

A Geometric Approach to Differential Forms

A Geometric Approach to Differential Forms
Author: David Bachman
Publsiher: Springer Science & Business Media
Total Pages: 156
Release: 2012-02-02
Genre: Mathematics
ISBN: 9780817683047

Download A Geometric Approach to Differential Forms Book in PDF, Epub and Kindle

This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.