Fundamentals of Transmission Lines and Electromagnetic Fields

Fundamentals of Transmission Lines and Electromagnetic Fields
Author: S. R. Seshadri
Publsiher: Addison Wesley Publishing Company
Total Pages: 616
Release: 1971
Genre: Law
ISBN: UCSD:31822014068845

Download Fundamentals of Transmission Lines and Electromagnetic Fields Book in PDF, Epub and Kindle

Electromagnetics and Transmission Lines

Electromagnetics and Transmission Lines
Author: Robert Alan Strangeway,Steven Sean Holland,James Elwood Richie
Publsiher: John Wiley & Sons
Total Pages: 308
Release: 2022-11-22
Genre: Science
ISBN: 9781119881902

Download Electromagnetics and Transmission Lines Book in PDF, Epub and Kindle

Electromagnetics and Transmission Lines Textbook resource covering static electric and magnetic fields, dynamic electromagnetic fields, transmission lines, antennas, and signal integrity within a single course Electromagnetics and Transmission Lines provides coverage of what every electrical engineer (not just the electromagnetic specialist) should know about electromagnetic fields and transmission lines. This work examines several fundamental electrical engineering concepts and components from an electromagnetic fields viewpoint, such as electric circuit laws, resistance, capacitance, and self and mutual inductances. The approach to transmission lines (T-lines), Smith charts, and scattering parameters establishes the underlying concepts of vector network analyzer (VNA) measurements. System-level antenna parameters, basic wireless links, and signal integrity are examined in the final chapters. As an efficient learning resource, electromagnetics and transmission lines content is strategically modulated in breadth and depth towards a single semester objective. Extraneous, distracting topics are excluded. The wording style is somewhat more conversational than most electromagnetics textbooks in order to enhance student engagement and inclusivity while conveying the rigor that is essential for engineering student development. To aid in information retention, the authors also provide supplementary material, including a homework solutions manual, lecture notes, and VNA experiments. Sample topics covered in Electromagnetics and Transmission Lines include: Vector algebra and coordinate systems, Coulomb’s law, Biot-Savart law, Gauss’s law, and solenoidal magnetic flux Electric potential, Ampere’s circuital law, Faraday’s law, displacement current, and the electromagnetic principles underlying resistance, capacitance, and self and mutual inductances The integral form of Maxwell’s equations from a conceptual viewpoint that relates the equations to physical understanding (the differential forms are also included in an appendix) DC transients and AC steady-state waves, reflections, and standing waves on T-lines Interrelationships of AC steady-state T-line theory, the Smith chart, and scattering parameters Antenna basics and line-of-sight link analysis using the Friis equation An introduction to signal integrity Electromagnetics and Transmission Lines is an authoritative textbook learning resource, suited perfectly for engineering programs at colleges and universities with a single required electromagnetic fields course. Student background assumptions are multivariable calculus, DC and AC electric circuits, physics of electromagnetics, and elementary differential equations.

Fundamentals of Electromagnetics 2

Fundamentals of Electromagnetics 2
Author: David Voltmer
Publsiher: Springer Nature
Total Pages: 185
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 9783031017001

Download Fundamentals of Electromagnetics 2 Book in PDF, Epub and Kindle

This book is the second of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 2: Quasistatics and Waves examines how the low-frequency models of lumped elements are modified to include parasitic elements. For even higher frequencies, wave behavior in space and on transmission lines is explained. Finally, the textbook concludes with details of transmission line properties and applications. Upon completion of this book and its companion Fundamentals of Electromagnetics Vol 1: Internal Behavior of Lumped Elements, with a focus on the DC and low-frequency behavior of electromagnetic fields within lumped elements, students will have gained the necessary knowledge to progress to advanced studies of electromagnetics.

Electromagnetic Field Interaction with Transmission Lines

Electromagnetic Field Interaction with Transmission Lines
Author: Farhad Rachidi,Sergey Tkachenko
Publsiher: WIT Press
Total Pages: 289
Release: 2008
Genre: Science
ISBN: 9781845640637

Download Electromagnetic Field Interaction with Transmission Lines Book in PDF, Epub and Kindle

The evaluation of electromagnetic field coupling to transmission lines is an important problem in electromagnetic compatibility. Traditionally, use is made of the TL approximation which applies to uniform transmission lines with electrically small cross-sectional dimensions, where the dominant mode of propagation is TEM. Antenna-mode currents and higher-order modes appearing at higher frequencies are neglected in TL theory. The use of the TL approximation has permitted to solve a large range of problems (e.g. lightning and EMP interaction with power lines). However, the continual increase in operating frequency of products and higher frequency sources of disturbances (such as UWB systems) makes that the TL basic assumptions are no longer acceptable for a certain number of applications. In the last decade or so, the generalization of classical TL theory to take into account high frequency effects has emerged as an important topic of study in electromagnetic compatibility. This effort resulted in the elaboration of the so-called 'generlized' or 'full-wave' TL theory, which incorporates high frequency radiation effects, while keeping the relative simplicity of TL equations. This book is organized in two main parts. Part I presents consolidated knowledge of classical transmission line theory and different field-to-transmission line coupling models. Part II presents different approaches developed to generalize TL Theory.

ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

ELECTROMAGNETIC WAVES AND TRANSMISSION LINES
Author: R. S. RAO
Publsiher: PHI Learning Pvt. Ltd.
Total Pages: 592
Release: 2012-01-17
Genre: Technology & Engineering
ISBN: 9788120345157

Download ELECTROMAGNETIC WAVES AND TRANSMISSION LINES Book in PDF, Epub and Kindle

This systematic and well-written book provides an in-depth analysis of all the major areas of the subject such as fields, waves and lines. It is written in a simple and an easy-to-understand language. Beginning with a discussion on vector calculus, the book elaborately explains electrostatics, including the concepts of electric force and field intensity, electric displacement, Gauss law, conductors, dielectrics and capacitors. This is followed by a detailed study of magnetostatics, covering Biot–Savart law, Lorentz’s force law and Ampere’s circuital law. Then, it discusses Maxwell’s equations that describe the time-varying fields and the wave theory which is the basis of radiation and wireless communications. Finally, the book gives a fair treatment to transmission line theory, which is a foundation course in mechanical engineering. The text is well-supported by a large number of solved and unsolved problems to enhance the analytical skill of the students. The problems are framed to test the conceptual understanding of the students. It also includes plenty of objective type questions with answers. It is intended as a textbook for the undergraduate students of Electrical and Electronics Engineering and Electronics and Communication Engineering for their course on Electromagnetic Waves and Transmission Lines.

Electromagnetic Field Theory and Transmission Lines

Electromagnetic Field Theory and Transmission Lines
Author: G. S. N. Raju
Publsiher: Pearson Education India
Total Pages: 610
Release: 2006
Genre: Electromagnetic fields
ISBN: 8131701719

Download Electromagnetic Field Theory and Transmission Lines Book in PDF, Epub and Kindle

Electromagnetic Field Theory and Transmission Lines is an ideal textbook for a single semester, first course on Electromagnetic Field Theory (EMFT) at the undergraduate level. This book uses plain and simple English, diagrammatic representations and real life examples to explain the fundamental concepts, notations, representation and principles that govern the field of EMFT. The chapters cover every aspect of EMFT from electrostatics to advanced topics dealing with Electromagnetic Interference (EMI)/Electromagnetic Compatibility (EMC), EMC standards and design methods for EMC. Careful and deta.

Transmission Lines and Wave Propagation

Transmission Lines and Wave Propagation
Author: Philip C. Magnusson,Andreas Weisshaar,Vijai K. Tripathi,Gerald C. Alexander
Publsiher: CRC Press
Total Pages: 536
Release: 2017-07-12
Genre: Technology & Engineering
ISBN: 9781482273922

Download Transmission Lines and Wave Propagation Book in PDF, Epub and Kindle

Transmission Lines and Wave Propagation, Fourth Edition helps readers develop a thorough understanding of transmission line behavior, as well as their advantages and limitations. Developments in research, programs, and concepts since the first edition presented a demand for a version that reflected these advances. Extensively revised, the fourth edition of this bestselling text does just that, offering additional formulas and expanded discussions and references, in addition to a chapter on coupled transmission lines. What Makes This Text So Popular? The first part of the book explores distributed-circuit theory and presents practical applications. Using observable behavior, such as travel time, attenuation, distortion, and reflection from terminations, it analyzes signals and energy traveling on transmission lines at finite velocities. The remainder of the book reviews the principles of electromagnetic field theory, then applies Maxwell's equations for time-varying electromagnetic fields to coaxial and parallel conductor lines, as well as rectangular, circular, and elliptical cylindrical hollow metallic waveguides, and fiber-optic cables. This progressive organization and expanded coverage make this an invaluable reference. With its analysis of coupled lines, it is perfect as a text for undergraduate courses, while graduate students will appreciate it as an excellent source of extensive reference material. This Edition Includes: An overview of fiber optic cables emphasizing the principle types, their propagating modes, and dispersion Discussion of the role of total internal reflection at the core/cladding interface, and the specific application of boundary conditions to a circularly symmetrical propagating mode A chapter on coupled transmission lines, including coupled-line network analysis and basic crosstalk study More information on pulse propagation on lines with skin-effect losses A freeware program available online Solutions manual available with qualifying course adoption

Radiating Nonuniform Transmission Line Systems and the Partial Element Equivalent Circuit Method

Radiating Nonuniform Transmission Line Systems and the Partial Element Equivalent Circuit Method
Author: Prof. Dr. Juergen Nitsch,Dr. Frank Gronwald,Prof. Dr. Gunter Wollenberg
Publsiher: John Wiley & Sons
Total Pages: 348
Release: 2009-10-29
Genre: Science
ISBN: 9780470682418

Download Radiating Nonuniform Transmission Line Systems and the Partial Element Equivalent Circuit Method Book in PDF, Epub and Kindle

High frequencies of densely packed modern electronic equipment turn even the smallest piece of wire into a transmission line with signal retardation, dispersion, attenuation, and distortion. In electromagnetic environments with high-power microwave or ultra-wideband sources, transmission lines pick up noise currents generated by external electromagnetic fields. These are superimposed on essential signals, the lines acting not only as receiving antennas but radiating parts of the signal energy into the environment. This book is outstanding in its originality. While many textbooks rephrase that which has been written before, this book features: an accessible introduction to the fundamentals of electromagnetics; an explanation of the newest developments in transmission line theory, featuring the transmission line super theory developed by the authors; a unique exposition of the increasingly popular PEEC (partial element equivalent circuit) method, including recent research results. Both the Transmission Line Theory and the PEEC method are well suited to combine linear structures with circuit networks. For engineers, researchers, and graduate students, this text broadens insight into the basics of electrical engineering. It provides a deeper understanding of Maxwellian-circuit-like representations of multi-conductor transmission lines, justifies future research in this field.