Gauge Theories in Particle Physics 40th Anniversary Edition A Practical Introduction Volume 2

Gauge Theories in Particle Physics  40th Anniversary Edition  A Practical Introduction  Volume 2
Author: Ian J R Aitchison,Anthony J.G. Hey
Publsiher: CRC Press
Total Pages: 1119
Release: 2024-06-19
Genre: Science
ISBN: 9781040012871

Download Gauge Theories in Particle Physics 40th Anniversary Edition A Practical Introduction Volume 2 Book in PDF, Epub and Kindle

The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. Volume 2 of this updated edition covers the two non-Abelian gauge theories of QCD and the GSW theory. A distinctive feature is the extended treatment of two crucial theoretical tools: spontaneous symmetry breaking and the renormalization group. The underlying physics of these is elucidated by parallel discussions of examples from condensed matter systems: superfluidity and superconductivity, and critical phenomena. This new edition includes updates to jet algorithms, lattice field theory, CP violation and the CKM matrix, and neutrino physics. New to the fifth edition: · Tests of the Standard Model in the Higgs and top quark sectors · The naturalness problem and responses to it going beyond the Standard Model · The Standard Model as an effective field theory Each volume should serve as a valuable handbook for students and researchers in advanced particle physics looking for an accessible introduction to the Standard Model of particle physics. Ian J.R. Aitchison is Emeritus Professor of Physics at the University of Oxford. He has previously held research positions at Brookhaven National Laboratory, Saclay, and the University of Cambridge. He was a visiting professor at the University of Rochester and the University of Washington, and a scientific associate at CERN and SLAC. Dr. Aitchison has published over 90 scientific papers mainly on hadronic physics and quantum field theory. He is the author of two books and joint editor of further two. Anthony J.G. Hey is now Honorary Senior Data Scientist at the UK’s National Laboratory at Harwell. He began his career with a doctorate in particle physics from the University of Oxford. After a career in particle physics that included a professorship at the University of Southampton and research positions at Caltech, MIT and CERN, he moved to Computer Science and founded a parallel computing research group. The group were one of the pioneers of distributed memory message-passing computers and helped establish the ‘MPI’ message passing standard. After leaving Southampton in 2001 he was director of the UK’s ‘eScience’ initiative before becoming a Vice-President in Microsoft Research. He returned to the UK in 2015 as Chief Data Scientist at the U.K.’s Rutherford Appleton Laboratory. He then founded a new ‘Scientific Machine Learning’ group to apply AI technologies to the ‘Big Scientific Data’ generated by the Diamond Synchrotron, the ISIS neutron source, and the Central Laser Facility that are located on the Harwell campus. He is the author of over 100 scientific papers on physics and computing and editor of ‘The Feynman Lectures on Computation’.

Gauge Theories in Particle Physics 40th Anniversary Edition A Practical Introduction Volume 2

Gauge Theories in Particle Physics  40th Anniversary Edition  A Practical Introduction  Volume 2
Author: Ian J R Aitchison,Anthony J.G. Hey
Publsiher: CRC Press
Total Pages: 470
Release: 2024-06-19
Genre: Science
ISBN: 9781040012826

Download Gauge Theories in Particle Physics 40th Anniversary Edition A Practical Introduction Volume 2 Book in PDF, Epub and Kindle

The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. Volume 2 of this updated edition covers the two non-Abelian gauge theories of QCD and the GSW theory. A distinctive feature is the extended treatment of two crucial theoretical tools: spontaneous symmetry breaking and the renormalization group. The underlying physics of these is elucidated by parallel discussions of examples from condensed matter systems: superfluidity and superconductivity, and critical phenomena. This new edition includes updates to jet algorithms, lattice field theory, CP violation and the CKM matrix, and neutrino physics. New to the fifth edition: Tests of the Standard Model in the Higgs and top quark sectors The naturalness problem and responses to it going beyond the Standard Model The Standard Model as an effective field theory Each volume should serve as a valuable handbook for students and researchers in advanced particle physics looking for an accessible introduction to the Standard Model of particle physics.

Gauge Theories in Particle Physics 40th Anniversary Edition A Practical Introduction Volume 1

Gauge Theories in Particle Physics  40th Anniversary Edition  A Practical Introduction  Volume 1
Author: Ian J R Aitchison,Anthony J.G. Hey
Publsiher: CRC Press
Total Pages: 382
Release: 2024-06-19
Genre: Science
ISBN: 9781040012741

Download Gauge Theories in Particle Physics 40th Anniversary Edition A Practical Introduction Volume 1 Book in PDF, Epub and Kindle

The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. Volume 1 of this updated edition provides a broad introduction to the first of these theories, QED. The book begins with self-contained presentations of relativistic quantum mechanics and electromagnetism as a gauge theory. Lorentz transformations, discrete symmetries, and Majorana fermions are covered. A unique feature is the elementary introduction to quantum field theory, leading in easy stages to covariant perturbation theory and Feynman graphs, thereby establishing a firm foundation for the formal and conceptual framework upon which the subsequent development of the three quantum gauge field theories of the Standard Model is based. Detailed tree-level calculations of physical processes in QED are presented, followed by an elementary treatment of one-loop renormalization of a model scalar field theory, and then by the realistic case of QED. The text includes updates on nucleon structure functions and the status of QED, in particular the precision tests provided by the anomalous magnetic moments of the electron and muon. The authors discuss the main conceptual points of the theory, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight. Each volume should serve as a valuable handbook for students and researchers in advanced particle physics looking for an introduction to the Standard Model of particle physics.

Gauge Theories in Particle Physics

Gauge Theories in Particle Physics
Author: Ian Johnston Rhind Aitchison,Anthony J. G. Hey
Publsiher: Unknown
Total Pages: 364
Release: 1982
Genre: Feynman diagrams
ISBN: MINN:31951000510302K

Download Gauge Theories in Particle Physics Book in PDF, Epub and Kindle

Gauge Theories in Particle Physics 40th Anniversary Edition

Gauge Theories in Particle Physics 40th Anniversary Edition
Author: Ian J R Aitchison,Anthony J G Hey
Publsiher: Unknown
Total Pages: 0
Release: 2024-06-19
Genre: Science
ISBN: 1032726180

Download Gauge Theories in Particle Physics 40th Anniversary Edition Book in PDF, Epub and Kindle

The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of the Higgs and top quark sectors, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. The first volume provides a broad and self-contained introduction to the first of these theories, QED. A unique feature is the elementary introduction to quantum field theory, leading in easy stages to covariant perturbation theory and Feynman graphs, thereby establishing a firm foundation for the formal and conceptual framework upon which the subsequent development of the three quantum gauge field theories of the Standard Model is based. The second volume covers the two non-Abelian gauge theories of QCD and the GSW theory. A distinctive feature is the extended treatment of two crucial theoretical tools: spontaneous symmetry breaking and the renormalization group. The underlying physics of these is elucidated by parallel discussions of examples from condensed matter systems: superfluidity and superconductivity, and critical phenomena. This new edition includes updates to jet algorithms, lattice field theory, CP violation and the CKM matrix, and neutrino physics. New to the fifth edition: - Tests of the Standard Model in the Higgs and top quark sectors - The naturalness problem and responses to it going beyond the Standard Model - The Standard Model as an effective field theory This revised and updated anniversary edition provides a self-contained pedagogical treatment of the subject, from relativistic quantum mechanics to the frontiers of the Standard Model. For each theory, the authors discuss the main conceptual points in both mathematical and physical aspects, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight. This set should serve as a valuable handbook for students and researchers in advanced particle physics looking for an introduction to the Standard Model of particle physics. Ian J.R. Aitchison is Emeritus Professor of Physics at the University of Oxford. He has previously held research positions at Brookhaven National Laboratory, Saclay, and the University of Cambridge. He was a visiting professor at the University of Rochester and the University of Washington, and a scientific associate at CERN and SLAC. Dr. Aitchison has published over 90 scientific papers mainly on hadronic physics and quantum field theory. He is the author of two books and joint editor of further two. Anthony J.G. Hey is now Honorary Senior Data Scientist at the UK's National Laboratory at Harwell. He began his career with a doctorate in particle physics from the University of Oxford. After a career in particle physics that included a professorship at the University of Southampton and research positions at Caltech, MIT and CERN, he moved to Computer Science and founded a parallel computing research group. The group were one of the pioneers of distributed memory message-passing computers and helped establish the 'MPI' message passing standard. After leaving Southampton in 2001 he was director of the UK's 'eScience' initiative before becoming a Vice-President in Microsoft Research. He returned to the UK in 2015 as Chief Data Scientist at the U.K.'s Rutherford Appleton Laboratory. He then founded a new 'Scientific Machine Learning' group to apply AI technologies to the 'Big Scientific Data' generated by the Diamond Synchrotron, the ISIS neutron source, and the Central Laser Facility that are located on the Harwell campus. He is the author of over 100 scientific papers on physics and computing and editor of 'The Feynman Lectures on Computation'.

Gauge Theories in Particle Physics A Practical Introduction Volume 2 Non Abelian Gauge Theories

Gauge Theories in Particle Physics  A Practical Introduction  Volume 2  Non Abelian Gauge Theories
Author: Ian J R Aitchison,Anthony J.G. Hey
Publsiher: CRC Press
Total Pages: 524
Release: 2012-12-17
Genre: Science
ISBN: 9781466513075

Download Gauge Theories in Particle Physics A Practical Introduction Volume 2 Non Abelian Gauge Theories Book in PDF, Epub and Kindle

Volume 2 of this revised and updated edition provides an accessible and practical introduction to the two non-Abelian quantum gauge field theories of the Standard Model of particle physics: quantum chromodynamics (QCD) and the Glashow-Salam-Weinberg (GSW) electroweak theory. This volume covers much of the experimental progress made in the last ten years. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles in neutrino physics. Exploring a new era in particle physics, this edition discusses one of the most recent and exciting breakthroughs—the discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. New to the Fourth Edition New chapter on CP violation and oscillations in mesonic and neutrino systems New section on three-generation quark mixing and the CKM matrix Improved discussion of two-jet cross section in electron-positron annihilation New section on jet algorithms Recent lattice QCD calculations with dynamical fermions New section on effective Lagrangians for spontaneously broken chiral symmetry, including the three-flavor extension, meson mass relations, and chiral perturbation theory Update of asymptotic freedom Discussion of the historic discovery of a Higgs-like boson The authors discuss the main conceptual points of the theories, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.

Gauge Theories in Particle Physics A Practical Introduction Fourth Edition 2 Volume set

Gauge Theories in Particle Physics  A Practical Introduction  Fourth Edition   2 Volume set
Author: Ian J.R. Aitchison,Anthony J.G. Hey
Publsiher: CRC Press
Total Pages: 979
Release: 2021-01-14
Genre: Science
ISBN: 9781466591127

Download Gauge Theories in Particle Physics A Practical Introduction Fourth Edition 2 Volume set Book in PDF, Epub and Kindle

The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field theories of the Standard Model: QCD and the GSW electroweak theory. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles for neutrinos. Exploring a new era in particle physics, this edition discusses the exciting discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. This revised and updated edition provides a self-contained pedagogical treatment of the subject, from relativistic quantum mechanics to the frontiers of the Standard Model. For each theory, the authors discuss the main conceptual points, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.

Gauge Theories in Particle Physics Third Edition 2 volume set

Gauge Theories in Particle Physics  Third Edition   2 volume set
Author: Ian J.R. Aitchison,I.J.R. Aitchison,A.J.G. Hey,Anthony J.G. Hey
Publsiher: CRC Press
Total Pages: 474
Release: 2004-01-01
Genre: Science
ISBN: 0750309822

Download Gauge Theories in Particle Physics Third Edition 2 volume set Book in PDF, Epub and Kindle

This two-volume set provides an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this third edition, much has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. On the one hand, substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth-year courses. On the other hand, since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended to provide a uniquely accessible and self-contained introduction to quantum field dynamics as described by Feynman graphs. The level is suitable for advanced fourth-year undergraduates and first-year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED. The second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.