Hydride vapour phase epitaxy growth crystal properties and dopant incorporation in gallium nitride

Hydride vapour phase epitaxy growth  crystal properties and dopant incorporation in gallium nitride
Author: Patrick Hofmann
Publsiher: BoD – Books on Demand
Total Pages: 166
Release: 2018-08-15
Genre: Science
ISBN: 9783752884920

Download Hydride vapour phase epitaxy growth crystal properties and dopant incorporation in gallium nitride Book in PDF, Epub and Kindle

This dissertation employs doping to investigate basic gallium nitride (GaN) crystal properties and to solve challenges of the hydride vapour phase epitaxy (HVPE) growth process. Whereas the first chapter is a short introduction to the history of the GaN single crystal growth, the 2nd chapter introduces to current crystal growth techniques, discusses properties of the GaN material system and the resulting influence on the applicable crystal growth techniques. HVPE, as a vapour phase epitaxy crystal growth method will be explained in greater detail, with focus on the used vertical reactor and its capabilities for doping. The 3rd chapter then focusses on point defects in GaN, specifically on intentionally introduced extrinsic point defects used for doping purposes, i.e. to achieve p-type, n-type or semi-insulating behaviour. Different dopants will be reviewed before the diffusion of point defects in a solid will be discussed. The in-situ introduction of iron, manganese, and carbon during crystal growth is employed in chapter 4 to compensate the unintentional doping (UID) of the GaN crystals, and therefore to achieve truly semi-insulating behaviour of the HVPE GaN. However the focus of this chapter lies on the characterisation of the pyroelectric coefficient (p), as semi-insulating properties are a necessary requirement for the applied Sharp-Garn measurement method. The creation of tensile stress due to in-situ silicon doping during GaN crystal growth is the topic of the 5th chapter. The tensile stress generation effect will be reproduced and the strain inside the crystal will be monitored ex-situ employing Raman spectroscopy. The n-type doping is achieved by using a vapour phase doping line and a process is developed to hinder the tensile strain generation effect. The 6th chapter concentrates on the delivery of the doping precursor via a solid state doping line, a newly developed doping method. Similar to chapter 5, the doping line is characterised carefully before the germanium doping is employed to the GaN growth. The focus lies on the homogeneity of the germanium doping and it is compared compared to the silicon doping and the vapour phase doping line. Benefits and drawbacks are discussed in conjunction with the obtained results. The germanium doping via solid state doping line is applied to the HVPE GaN growth process to measure accurately growth process related properties unique to the applied set of GaN growth parameters.

Vertical Gallium Nitride PowerDevices Fabrication and Characterisation

Vertical Gallium Nitride PowerDevices  Fabrication and Characterisation
Author: Rico Hentschel
Publsiher: BoD – Books on Demand
Total Pages: 156
Release: 2021-01-03
Genre: Science
ISBN: 9783752641769

Download Vertical Gallium Nitride PowerDevices Fabrication and Characterisation Book in PDF, Epub and Kindle

Efficient power conversion is essential to face the continuously increasing energy consumption of our society. GaN based vertical power field effect transistors provide excellent performance figures for power-conversion switches, due to their capability of handling high voltages and current densities with very low area consumption. This work focuses on a vertical trench gate metal oxide semiconductor field effect transistor (MOSFET) with conceptional advantages in a device fabrication preceded GaN epitaxy and enhancement mode characteristics. The functional layer stack comprises from the bottom an n+/n--drift/p-body/n+-source GaN layer sequence. Special attention is paid to the Mg doping of the p-GaN body layer, which is a complex topic by itself. Hydrogen passivation of magnesium plays an essential role, since only the active (hydrogen-free) Mg concentration determines the threshold voltage of the MOSFET and the blocking capability of the body diode. Fabrication specific challenges of the concept are related to the complex integration, formation of ohmic contacts to the functional layers, the specific implementation and processing scheme of the gate trench module and the lateral edge termination. The maximum electric field, which was achieved in the pn- junction of the body diode of the MOSFET is estimated to be around 2.1 MV/cm. From double-sweep transfer measurements with relatively small hysteresis, steep subthreshold slope and a threshold voltage of 3 - 4 V a reasonably good Al2O3/GaN interface quality is indicated. In the conductive state a channel mobility of around 80 - 100 cm2/Vs is estimated. This value is comparable to device with additional overgrowth of the channel. Further enhancement of the OFF-state and ON-state characteristics is expected for optimization of the device termination and the high-k/GaN interface of the vertical trench gate, respectively. From the obtained results and dependencies key figures of an area efficient and competitive device design with thick drift layer is extrapolated. Finally, an outlook is given and advancement possibilities as well as technological limits are discussed.

Chemical Vapor Deposition 1960 1980

Chemical Vapor Deposition  1960 1980
Author: Donald T. Hawkins
Publsiher: Springer
Total Pages: 762
Release: 1981-11-30
Genre: Reference
ISBN: UOM:39015018131568

Download Chemical Vapor Deposition 1960 1980 Book in PDF, Epub and Kindle

Nitrides and Related Wide Band Gap Materials

Nitrides and Related Wide Band Gap Materials
Author: A. Hangleiter
Publsiher: Unknown
Total Pages: 440
Release: 1999-08-19
Genre: Science
ISBN: UOM:39015048524915

Download Nitrides and Related Wide Band Gap Materials Book in PDF, Epub and Kindle

The Symposium on 'Nitrides and related wide band gap materials' at the 1998 Spring Meeting of the European Materials Research Society (E-MRS) in Strasbourg, France, was the third Symposium of its kind at an E-MRS meeting. Beginning in 1996, these Symposia enjoyed a steadily increasing popularity among European and international nitride researchers. Contributions covered the areas of hetero-epitaxy, bulk growth, structural, electrical and optical characterisation and device fabrication. Researchers from about 20 different countries presented their work at this symposium. Naturally, most papers were from within Europe (Germany, France, Russia and the United Kingdom) but there was also a remarkable number of contributions from overseas (USA, Japan and Korea.) For about 5 years now, semiconducting group-III nitrides have attracted an enormous level of research activity all over the world. Essentially this was triggered by the breakthroughs achieved by Shuji Nakamura and his group in Japan, who succeeded in making highly efficient blue, green and yellow light emitting diodes as well as violet laser diodes based on A1GaInN. Since then, intensive research related to material growth, device development, as well as to the fundamental properties of these materials is being carried out. The outstanding contribution of Shuji Nakamura to this field was underlined by his plenary lecture during this E-MRS meeting. He presented his most recent progress towards amber LED's and long-lived violet laser diodes.

CVD solutions for new directions in SiC and GaN epitaxy

CVD solutions for new directions in SiC and GaN epitaxy
Author: Xun Li
Publsiher: Linköping University Electronic Press
Total Pages: 57
Release: 2015-05-22
Genre: Gallium nitride
ISBN: 9789175190846

Download CVD solutions for new directions in SiC and GaN epitaxy Book in PDF, Epub and Kindle

This thesis aims to develop a chemical vapor deposition (CVD) process for the new directions in both silicon carbon (SiC) and gallium nitride (GaN) epitaxial growth. The properties of the grown epitaxial layers are investigated in detail in order to have a deep understanding. SiC is a promising wide band gap semiconductor material which could be utilized for fabricating high-power and high-frequency devices. 3C-SiC is the only polytype with a cubic structure and has superior physical properties over other common SiC polytypes, such as high hole/electron mobility and low interface trap density with oxide. Due to lack of commercial native substrates, 3C-SiC is mainly grown on the cheap silicon (Si) substrates. However, there’s a large mismatch in both lattice constants and thermal expansion coefficients leading to a high density of defects in the epitaxial layers. In paper 1, the new CVD solution for growing high quality double-position-boundaries free 3C-SiC using on-axis 4H-SiC substrates is presented. Reproducible growth parameters, including temperature, C/Si ratio, ramp-up condition, Si/H2 ratio, N2 addition and pressure, are covered in this study. GaN is another attractive wide band gap semiconductor for power devices and optoelectronic applications. In the GaN-based transistors, carbon is often exploited to dope the buffer layer to be semi-insulating in order to isolate the device active region from the substrate. The conventional way is to use the carbon atoms on the gallium precursor and control the incorporation by tuning the process parameters, e.g. temperature, pressure. However, there’s a risk of obtaining bad morphology and thickness uniformity if the CVD process is not operated in an optimal condition. In addition, carbon source from the graphite insulation and improper coated graphite susceptor may also contribute to the doping in a CVD reactor, which is very difficult to be controlled in a reproducible way. Therefore, in paper 2, intentional carbon doping of (0001) GaN using six hydrocarbon precursors, i.e. methane (CH4), ethylene (C2H4), acetylene (C2H2), propane (C3H8), iso-butane (i-C4H10) and trimethylamine (N(CH3)3), have been explored. In paper 3, propane is chosen for carbon doping when growing the high electron mobility transistor (HEMT) structure on a quarter of 3-inch 4H-SiC wafer. The quality of epitaxial layer and fabricated devices is evaluated. In paper 4, the behaviour of carbon doping using carbon atoms from the gallium precursor, trimethylgallium (Ga(CH3)3), is explained by thermochemical and quantum chemical modelling and compared with the experimental results. GaN is commonly grown on foreign substrates, such as sapphire (Al2O3), Si and SiC, resulting in high stress and high threading dislocation densities. Hence, bulk GaN substrates are preferred for epitaxy. In paper 5, the morphological, structural and luminescence properties of GaN epitaxial layers grown on N-face free-standing GaN substrates are studied since the N-face GaN has advantageous characteristics compared to the Ga-face GaN. In paper 6, time-resolved photoluminescence (TRPL) technique is used to study the properties of AlGaN/GaN epitaxial layers grown on both Ga-face and N-face free-standing GaN substrates. A PL line located at ~3.41 eV is only emerged on the sample grown on the Ga-face substrate, which is suggested to associate with two-dimensional electron gas (2DEG) emission.

Chemical Abstracts

Chemical Abstracts
Author: Anonim
Publsiher: Unknown
Total Pages: 2002
Release: 2002
Genre: Chemistry
ISBN: UOM:39015057317482

Download Chemical Abstracts Book in PDF, Epub and Kindle

Gallium Nitride Epitaxy by a Novel Hybrid VPE Technique

Gallium Nitride Epitaxy by a Novel Hybrid VPE Technique
Author: David J. Miller
Publsiher: Stanford University
Total Pages: 131
Release: 2011
Genre: Electronic Book
ISBN: STANFORD:hz462yv9251

Download Gallium Nitride Epitaxy by a Novel Hybrid VPE Technique Book in PDF, Epub and Kindle

Gallium nitride is an important material for the production of next-generation visible and near-UV optical devices, as well as for high temperature electronic amplifiers and circuits; however there has been no bulk method for the production of GaN substrates for device layer growth. Instead, thick GaN layers are heteroepitaxially deposited onto non-native substrates (usually sapphire) by one of two vapor phase epitaxy (VPE) techniques: MOVPE (metalorganic VPE) or HVPE (hydride VPE). Each method has its strengths and weaknesses: MOVPE has precise growth rate and layer thickness control but it is slow and expensive; HVPE is a low-cost method for high rate deposition of thick GaN, but it lacks the precise control and heterojunction layer growth required for device structures. Because of the large (14%) lattice mismatch, GaN grown on sapphire requires the prior deposition of a low temperature MOVPE nucleation layer using a second growth process in a separate deposition system. Here we present a novel hybrid VPE system incorporating elements of both techniques, allowing MOVPE and HVPE in a single growth run. In this way, a thick GaN layer can be produced directly on sapphire. GaN growth commences as small (50-100 nm diameter) coherent strained 3-dimensional islands which coalesce into a continuous film, after which 2-dimensional layer growth commences. The coalescence of islands imparts significant stress into the growing film, which increases with the film thickness until catastrophic breakage occurs, in-situ. Additionally, the mismatch in thermal expansion rates induces compressive stress upon cooling from the growth temperature of 1025°C. We demonstrate a growth technique that mitigates these stresses, by using a 2-step growth sequence: an initial high growth rate step resulting in a pitted but relaxed film, followed by a low growth rate smoothing layer. As a result, thick (> 50 [Mu]m) and freestanding films have been grown successfully. X-ray rocking curve linewidth of 105 arcseconds and 10K PL indicating no "yellow" emission indicate that the material quality is higher than that produced by conventional MOVPE. By further modifying the hybrid system to include a metallic Mn source, it is possible to grow a doped semi-insulating GaN template for use in high frequency electronics devices.

Ceramic Abstracts

Ceramic Abstracts
Author: Anonim
Publsiher: Unknown
Total Pages: 950
Release: 1999
Genre: Ceramics
ISBN: CORNELL:31924083101869

Download Ceramic Abstracts Book in PDF, Epub and Kindle