# Introduction To Deep Learning And Neural Networks With Python

Download **Introduction To Deep Learning And Neural Networks With Python** full books in PDF, epub, and Kindle. Read online free *Introduction To Deep Learning And Neural Networks With Python* ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

### Introduction to Deep Learning and Neural Networks with PythonTM

Author | : Ahmed Fawzy Gad,Fatima Ezzahra Jarmouni |

Publsiher | : Academic Press |

Total Pages | : 302 |

Release | : 2020-11-25 |

Genre | : Medical |

ISBN | : 9780323909341 |

**Download Introduction to Deep Learning and Neural Networks with PythonTM Book in PDF, Epub and Kindle**

Introduction to Deep Learning and Neural Networks with PythonTM: A Practical Guide is an intensive step-by-step guide for neuroscientists to fully understand, practice, and build neural networks. Providing math and PythonTM code examples to clarify neural network calculations, by book’s end readers will fully understand how neural networks work starting from the simplest model Y=X and building from scratch. Details and explanations are provided on how a generic gradient descent algorithm works based on mathematical and PythonTM examples, teaching you how to use the gradient descent algorithm to manually perform all calculations in both the forward and backward passes of training a neural network. Examines the practical side of deep learning and neural networks Provides a problem-based approach to building artificial neural networks using real data Describes PythonTM functions and features for neuroscientists Uses a careful tutorial approach to describe implementation of neural networks in PythonTM Features math and code examples (via companion website) with helpful instructions for easy implementation

### Introduction to Deep Learning and Neural Networks with PythonT

Author | : Ahmed Fawzy Gad,Fatima Ezzahra Jarmouni |

Publsiher | : Academic Press |

Total Pages | : 300 |

Release | : 2020-12-10 |

Genre | : Medical |

ISBN | : 9780323909334 |

**Download Introduction to Deep Learning and Neural Networks with PythonT Book in PDF, Epub and Kindle**

Introduction to Deep Learning and Neural Networks with PythonT: A Practical Guide is an intensive step-by-step guide for neuroscientists to fully understand, practice, and build neural networks. Providing math and PythonT code examples to clarify neural network calculations, by book's end readers will fully understand how neural networks work starting from the simplest model Y=X and building from scratch. Details and explanations are provided on how a generic gradient descent algorithm works based on mathematical and PythonT examples, teaching you how to use the gradient descent algorithm to manually perform all calculations in both the forward and backward passes of training a neural network. Examines the practical side of deep learning and neural networks Provides a problem-based approach to building artificial neural networks using real data Describes PythonT functions and features for neuroscientists Uses a careful tutorial approach to describe implementation of neural networks in PythonT Features math and code examples (via companion website) with helpful instructions for easy implementation

### Deep Learning with Python

Author | : Chao Pan |

Publsiher | : Createspace Independent Publishing Platform |

Total Pages | : 124 |

Release | : 2016-06-14 |

Genre | : Electronic Book |

ISBN | : 1721250972 |

**Download Deep Learning with Python Book in PDF, Epub and Kindle**

***** BUY NOW (will soon return to 24.77 $) *****Are you thinking of learning deep Learning using Python? (For Beginners Only) If you are looking for a beginners guide to learn deep learning, in just a few hours, this book is for you. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach, which would lead to better mental representations.Step-by-Step Guide and Visual Illustrations and ExamplesThis book and the accompanying examples, you would be well suited to tackle problems, which pique your interests using machine learning and deep learning models. Book Objectives This book will help you: Have an appreciation for deep learning and an understanding of their fundamental principles. Have an elementary grasp of deep learning concepts and algorithms. Have achieved a technical background in deep learning and neural networks using Python. Target UsersThe book designed for a variety of target audiences. Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and deep learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Introduction What is Artificial Intelligence, Machine Learning and Deep Learning? Mathematical Foundations of Deep Learning Understanding Machine Learning Models Evaluation of Machine Learning Models: Overfitting, Underfitting, Bias Variance Tradeoff Fully Connected Neural Networks Convolutional Neural Networks Recurrent Neural Networks Generative Adversarial Networks Deep Reinforcement Learning Introduction to Deep Neural Networks with Keras A First Look at Neural Networks in Keras Introduction to Pytorch The Pytorch Deep Learning Framework Your First Neural Network in Pytorch Deep Learning for Computer Vision Build a Convolutional Neural Network Deep Learning for Natural Language Processing Working with Sequential Data Build a Recurrent Neural Network Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: if you want to smash Deep Learning from scratch, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Can I have a refund if this book doesn't fit for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email.***** MONEY BACK GUARANTEE BY AMAZON ***** Editorial Reviews"This is an excellent book, it is a very good introduction to deep learning and neural networks. The concepts and terminology are clearly explained. The book also points out several good locations on the internet where users can obtain more information. I was extremely happy with this book and I recommend it for all beginners" - Prof. Alain Simon, EDHEC Business School. Statistician and DataScientist.

### Deep Learning Step by Step with Python

Author | : N. Lewis |

Publsiher | : Unknown |

Total Pages | : 210 |

Release | : 2016-07-26 |

Genre | : Electronic Book |

ISBN | : 1535410264 |

**Download Deep Learning Step by Step with Python Book in PDF, Epub and Kindle**

Finally! Deep Neural Networks Simplified with Python Deep Learning Step by Step with Python takes you on a gentle, fun and unhurried journey to building your own deep neural network models in Python. Using plain English, it offers an intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available to the data scientist for deep neural networks using Python. NO EXPERIENCE REQUIRED This book is designed to be accessible - I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to see deep neural networks explained in plain English, and try them out for yourself. It is so straightforward and easy to follow even your ten year old nephew (who dislikes math) can understand it! THIS BOOK IS FOR YOU IF YOU WANT: Explanations rather than mathematical derivation Real world applications that make sense. Illustrations to deepen your understanding. Worked examples in Python you can easily follow and immediately implement. Ideas you can actually use and try on your own data. QUICK AND EASY: Bestselling Data Scientist Dr. N.D Lewis shows you the shortcut up the steep steps to the very top. It's easier than you think. Through a simple to follow process you will learn how to build deep neural network models with Python. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful data science applications. YOU'LL LEARN HOW TO: Unleash the power of Deep Neural Networks for effective forecasting. Develop hands on solutions for binary classification. Design successful applications for multi-class problems. Master techniques for efficient model construction. Fine tune deep networks to boost, accelerate, and transform predictive performance. Build Deep Learning Models Faster! Everything you need to get started is contained within this book. Deep Learning Step by Step with Python is your very own hands on practical, tactical, easy to follow guide to mastery Buy this book today your next big breakthrough using deep neural networks is only a page away!

### Introduction to Deep Learning

Author | : Eugene Charniak |

Publsiher | : MIT Press |

Total Pages | : 187 |

Release | : 2019-02-19 |

Genre | : Computers |

ISBN | : 9780262351645 |

**Download Introduction to Deep Learning Book in PDF, Epub and Kindle**

A project-based guide to the basics of deep learning. This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach. Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.

### Deep Learning with PyTorch Quick Start Guide

Author | : David Julian |

Publsiher | : Packt Publishing Ltd |

Total Pages | : 150 |

Release | : 2018-12-24 |

Genre | : Computers |

ISBN | : 9781789539738 |

**Download Deep Learning with PyTorch Quick Start Guide Book in PDF, Epub and Kindle**

Introduction to deep learning and PyTorch by building a convolutional neural network and recurrent neural network for real-world use cases such as image classification, transfer learning, and natural language processing. Key FeaturesClear and concise explanationsGives important insights into deep learning modelsPractical demonstration of key conceptsBook Description PyTorch is extremely powerful and yet easy to learn. It provides advanced features, such as supporting multiprocessor, distributed, and parallel computation. This book is an excellent entry point for those wanting to explore deep learning with PyTorch to harness its power. This book will introduce you to the PyTorch deep learning library and teach you how to train deep learning models without any hassle. We will set up the deep learning environment using PyTorch, and then train and deploy different types of deep learning models, such as CNN, RNN, and autoencoders. You will learn how to optimize models by tuning hyperparameters and how to use PyTorch in multiprocessor and distributed environments. We will discuss long short-term memory network (LSTMs) and build a language model to predict text. By the end of this book, you will be familiar with PyTorch's capabilities and be able to utilize the library to train your neural networks with relative ease. What you will learnSet up the deep learning environment using the PyTorch libraryLearn to build a deep learning model for image classificationUse a convolutional neural network for transfer learningUnderstand to use PyTorch for natural language processingUse a recurrent neural network to classify textUnderstand how to optimize PyTorch in multiprocessor and distributed environmentsTrain, optimize, and deploy your neural networks for maximum accuracy and performanceLearn to deploy production-ready modelsWho this book is for Developers and Data Scientist familiar with Machine Learning but new to deep learning, or existing practitioners of deep learning who would like to use PyTorch to train their deep learning models will find this book to be useful. Having knowledge of Python programming will be an added advantage, while previous exposure to PyTorch is not needed.

### Python Deep Learning Develop Your First Neural Network in Python Using Tensorflow Keras and Pytorch

Author | : Samuel Burns |

Publsiher | : Step-By-Step Tutorial for Begi |

Total Pages | : 172 |

Release | : 2019-04-03 |

Genre | : Computers |

ISBN | : 1092562222 |

**Download Python Deep Learning Develop Your First Neural Network in Python Using Tensorflow Keras and Pytorch Book in PDF, Epub and Kindle**

Build your Own Neural Network today. Through easy-to-follow instruction and examples, you'll learn the fundamentals of Deep learning and build your very own Neural Network in Python using TensorFlow, Keras, PyTorch, and Theano. While you have the option of spending thousands of dollars on big and boring textbooks, we recommend getting the same pieces of information for a fraction of the cost. So Get Your Copy Now!! Why this book? Book ObjectivesThe following are the objectives of this book: To help you understand deep learning in detail To help you know how to get started with deep learning in Python by setting up the coding environment. To help you transition from a deep learning Beginner to a Professional. To help you learn how to develop a complete and functional artificial neural network model in Python on your own. Who this Book is for? The author targets the following groups of people: Anybody who is a complete beginner to deep learning with Python. Anybody in need of advancing their Python for deep learning skills. Professors, lecturers or tutors who are looking to find better ways to explain Deep Learning to their students in the simplest and easiest way. Students and academicians, especially those focusing on python programming, neural networks, machine learning, and deep learning. What do you need for this Book? You are required to have installed the following on your computer: Python 3.X. TensorFlow . Keras . PyTorch The Author guides you on how to install the rest of the Python libraries that are required for deep learning.The author will guide you on how to install and configure the rest. What is inside the book? What is Deep Learning? An Overview of Artificial Neural Networks. Exploring the Libraries. Installation and Setup. TensorFlow Basics. Deep Learning with TensorFlow. Keras Basics. PyTorch Basics. Creating Convolutional Neural Networks with PyTorch. Creating Recurrent Neural Networks with PyTorch. From the back cover. Deep learning is part of machine learning methods based on learning data representations. This book written by Samuel Burns provides an excellent introduction to deep learning methods for computer vision applications. The author does not focus on too much math since this guide is designed for developers who are beginners in the field of deep learning. The book has been grouped into chapters, with each chapter exploring a different feature of the deep learning libraries that can be used in Python programming language. Each chapter features a unique Neural Network architecture including Convolutional Neural Networks. After reading this book, you will be able to build your own Neural Networks using Tenserflow, Keras, and PyTorch. Moreover, the author has provided Python codes, each code performing a different task. Corresponding explanations have also been provided alongside each piece of code to help the reader understand the meaning of the various lines of the code. In addition to this, screenshots showing the output that each code should return have been given. The author has used a simple language to make it easy even for beginners to understand.

### Practical Deep Learning

Author | : Ronald T. Kneusel |

Publsiher | : No Starch Press |

Total Pages | : 463 |

Release | : 2021-03-16 |

Genre | : Computers |

ISBN | : 9781718500754 |

**Download Practical Deep Learning Book in PDF, Epub and Kindle**

Practical Deep Learning teaches total beginners how to build the datasets and models needed to train neural networks for your own DL projects. If you’ve been curious about machine learning but didn’t know where to start, this is the book you’ve been waiting for. Focusing on the subfield of machine learning known as deep learning, it explains core concepts and gives you the foundation you need to start building your own models. Rather than simply outlining recipes for using existing toolkits, Practical Deep Learning teaches you the why of deep learning and will inspire you to explore further. All you need is basic familiarity with computer programming and high school math—the book will cover the rest. After an introduction to Python, you’ll move through key topics like how to build a good training dataset, work with the scikit-learn and Keras libraries, and evaluate your models’ performance. You’ll also learn: How to use classic machine learning models like k-Nearest Neighbors, Random Forests, and Support Vector Machines How neural networks work and how they’re trained How to use convolutional neural networks How to develop a successful deep learning model from scratch You’ll conduct experiments along the way, building to a final case study that incorporates everything you’ve learned. The perfect introduction to this dynamic, ever-expanding field, Practical Deep Learning will give you the skills and confidence to dive into your own machine learning projects.