Introduction to Inverse Problems in Imaging

Introduction to Inverse Problems in Imaging
Author: M. Bertero,P. Boccacci
Publsiher: CRC Press
Total Pages: 364
Release: 2020-08-30
Genre: Technology & Engineering
ISBN: 9781439822067

Download Introduction to Inverse Problems in Imaging Book in PDF, Epub and Kindle

This is a graduate textbook on the principles of linear inverse problems, methods of their approximate solution, and practical application in imaging. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of readers from different backgrounds in science and engineering. Mathematical prerequisites are first courses in analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms. With examples and exercises throughout, the book will provide the reader with the appropriate background for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems.

Introduction to Inverse Problems in Imaging

Introduction to Inverse Problems in Imaging
Author: M. Bertero,P. Boccacci,Christine De Mol
Publsiher: CRC Press
Total Pages: 358
Release: 2021-12-20
Genre: Science
ISBN: 9781000516357

Download Introduction to Inverse Problems in Imaging Book in PDF, Epub and Kindle

Fully updated throughout and with several new chapters, this second edition of Introduction to Inverse Problems in Imaging guides advanced undergraduate and graduate students in physics, computer science, mathematics and engineering through the principles of linear inverse problems, in addition to methods of their approximate solution and their practical applications in imaging. This second edition contains new chapters on edge-preserving and sparsity-enforcing regularization in addition to maximum likelihood methods and Bayesian regularization for Poisson data. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of students from different backgrounds, with readers needing just a rudimentary understanding of analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms, and this second edition is accompanied by numerical examples throughout. It will provide readers with the appropriate background needed for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems. Key features: Provides an accessible introduction to the topic while keeping mathematics to a minimum Interdisciplinary topic with growing relevance and wide-ranging applications Accompanied by numerical examples throughout

Introduction to Inverse Problems in Imaging

Introduction to Inverse Problems in Imaging
Author: M. Bertero,P. Boccacci
Publsiher: CRC Press
Total Pages: 366
Release: 2020-08-30
Genre: Technology & Engineering
ISBN: 1439822069

Download Introduction to Inverse Problems in Imaging Book in PDF, Epub and Kindle

This is a graduate textbook on the principles of linear inverse problems, methods of their approximate solution, and practical application in imaging. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of readers from different backgrounds in science and engineering. Mathematical prerequisites are first courses in analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms. With examples and exercises throughout, the book will provide the reader with the appropriate background for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging
Author: Otmar Scherzer
Publsiher: Springer Science & Business Media
Total Pages: 1626
Release: 2010-11-23
Genre: Mathematics
ISBN: 9780387929194

Download Handbook of Mathematical Methods in Imaging Book in PDF, Epub and Kindle

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Nonlinear Inverse Problems in Imaging

Nonlinear Inverse Problems in Imaging
Author: Jin Keun Seo,Eung Je Woo
Publsiher: John Wiley & Sons
Total Pages: 379
Release: 2012-11-16
Genre: Technology & Engineering
ISBN: 9781118478158

Download Nonlinear Inverse Problems in Imaging Book in PDF, Epub and Kindle

This book provides researchers and engineers in the imaging field with the skills they need to effectively deal with nonlinear inverse problems associated with different imaging modalities, including impedance imaging, optical tomography, elastography, and electrical source imaging. Focusing on numerically implementable methods, the book bridges the gap between theory and applications, helping readers tackle problems in applied mathematics and engineering. Complete, self-contained coverage includes basic concepts, models, computational methods, numerical simulations, examples, and case studies. Provides a step-by-step progressive treatment of topics for ease of understanding. Discusses the underlying physical phenomena as well as implementation details of image reconstruction algorithms as prerequisites for finding solutions to non linear inverse problems with practical significance and value. Includes end of chapter problems, case studies and examples with solutions throughout the book. Companion website will provide further examples and solutions, experimental data sets, open problems, teaching material such as PowerPoint slides and software including MATLAB m files. Essential reading for Graduate students and researchers in imaging science working across the areas of applied mathematics, biomedical engineering, and electrical engineering and specifically those involved in nonlinear imaging techniques, impedance imaging, optical tomography, elastography, and electrical source imaging

Computational Methods for Inverse Problems

Computational Methods for Inverse Problems
Author: Curtis R. Vogel
Publsiher: SIAM
Total Pages: 195
Release: 2002-01-01
Genre: Mathematics
ISBN: 9780898717570

Download Computational Methods for Inverse Problems Book in PDF, Epub and Kindle

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Inverse Problems and Imaging

Inverse Problems and Imaging
Author: Luis L. Bonilla
Publsiher: Springer
Total Pages: 200
Release: 2009-06-19
Genre: Mathematics
ISBN: 9783540785477

Download Inverse Problems and Imaging Book in PDF, Epub and Kindle

Nowadays we are facing numerous and important imaging problems: nondestructive testing of materials, monitoring of industrial processes, enhancement of oil production by efficient reservoir characterization, emerging developments in noninvasive imaging techniques for medical purposes - computerized tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), X-ray and ultrasound tomography, etc. In the CIME Summer School on Imaging (Martina Franca, Italy 2002), leading experts in mathematical techniques and applications presented broad and useful introductions for non-experts and practitioners alike to many aspects of this exciting field. The volume contains part of the above lectures completed and updated by additional contributions on other related topics.

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems
Author: Luis Tenorio
Publsiher: SIAM
Total Pages: 275
Release: 2017-07-06
Genre: Mathematics
ISBN: 9781611974911

Download An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems Book in PDF, Epub and Kindle

Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.