Mathematical Analysis and the Mathematics of Computation

Mathematical Analysis and the Mathematics of Computation
Author: Werner Römisch,Thomas Zeugmann
Publsiher: Springer
Total Pages: 703
Release: 2016-10-04
Genre: Computers
ISBN: 9783319427553

Download Mathematical Analysis and the Mathematics of Computation Book in PDF, Epub and Kindle

This book is a comprehensive, unifying introduction to the field of mathematical analysis and the mathematics of computing. It develops the relevant theory at a modern level and it directly relates modern mathematical ideas to their diverse applications. The authors develop the whole theory. Starting with a simple axiom system for the real numbers, they then lay the foundations, developing the theory, exemplifying where it's applicable, in turn motivating further development of the theory. They progress from sets, structures, and numbers to metric spaces, continuous functions in metric spaces, linear normed spaces and linear mappings; and then differential calculus and its applications, the integral calculus, the gamma function, and linear integral operators. They then present important aspects of approximation theory, including numerical integration. The remaining parts of the book are devoted to ordinary differential equations, the discretization of operator equations, and numerical solutions of ordinary differential equations. This textbook contains many exercises of varying degrees of difficulty, suitable for self-study, and at the end of each chapter the authors present more advanced problems that shed light on interesting features, suitable for classroom seminars or study groups. It will be valuable for undergraduate and graduate students in mathematics, computer science, and related fields such as engineering. This is a rich field that has experienced enormous development in recent decades, and the book will also act as a reference for graduate students and practitioners who require a deeper understanding of the methodologies, techniques, and foundations.

Mathematical Analysis and Computing

Mathematical Analysis and Computing
Author: R. N. Mohapatra,S. Yugesh,G. Kalpana,C. Kalaivani
Publsiher: Springer Nature
Total Pages: 661
Release: 2021-05-05
Genre: Mathematics
ISBN: 9789813346468

Download Mathematical Analysis and Computing Book in PDF, Epub and Kindle

This book is a collection of selected papers presented at the International Conference on Mathematical Analysis and Computing (ICMAC 2019) held at Sri Sivasubramaniya Nadar College of Engineering, Chennai, India, from 23–24 December 2019. Having found its applications in game theory, economics, and operations research, mathematical analysis plays an important role in analyzing models of physical systems and provides a sound logical base for problems stated in a qualitative manner. This book aims at disseminating recent advances in areas of mathematical analysis, soft computing, approximation and optimization through original research articles and expository survey papers. This book will be of value to research scholars, professors, and industrialists working in these areas.

Mathematics and Computation

Mathematics and Computation
Author: Avi Wigderson
Publsiher: Princeton University Press
Total Pages: 434
Release: 2019-10-29
Genre: Computers
ISBN: 9780691189130

Download Mathematics and Computation Book in PDF, Epub and Kindle

An introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Mathematics for Computer Science

Mathematics for Computer Science
Author: Eric Lehman,F. Thomson Leighton,Albert R. Meyer
Publsiher: Unknown
Total Pages: 988
Release: 2017-03-08
Genre: Business & Economics
ISBN: 9888407066

Download Mathematics for Computer Science Book in PDF, Epub and Kindle

This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.

Numerical Analysis

Numerical Analysis
Author: David Kincaid,David Ronald Kincaid,Elliott Ward Cheney
Publsiher: American Mathematical Soc.
Total Pages: 810
Release: 2009
Genre: Numerical analysis
ISBN: 9780821847886

Download Numerical Analysis Book in PDF, Epub and Kindle

This book introduces students with diverse backgrounds to various types of mathematical analysis that are commonly needed in scientific computing. The subject of numerical analysis is treated from a mathematical point of view, offering a complete analysis of methods for scientific computing with appropriate motivations and careful proofs. In an engaging and informal style, the authors demonstrate that many computational procedures and intriguing questions of computer science arise from theorems and proofs. Algorithms are presented in pseudocode, so that students can immediately write computer programs in standard languages or use interactive mathematical software packages. This book occasionally touches upon more advanced topics that are not usually contained in standard textbooks at this level.

Mathematical Analysis

Mathematical Analysis
Author: Bernd S. W. Schröder
Publsiher: John Wiley & Sons
Total Pages: 584
Release: 2008-01-28
Genre: Mathematics
ISBN: 0470226765

Download Mathematical Analysis Book in PDF, Epub and Kindle

A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis and illustrates its role in mathematics. By focusing on the essentials, reinforcing learning through exercises, and featuring a unique "learn by doing" approach, the book develops the reader's proof writing skills and establishes fundamental comprehension of analysis that is essential for further exploration of pure and applied mathematics. This book is directly applicable to areas such as differential equations, probability theory, numerical analysis, differential geometry, and functional analysis. Mathematical Analysis is composed of three parts: ?Part One presents the analysis of functions of one variable, including sequences, continuity, differentiation, Riemann integration, series, and the Lebesgue integral. A detailed explanation of proof writing is provided with specific attention devoted to standard proof techniques. To facilitate an efficient transition to more abstract settings, the results for single variable functions are proved using methods that translate to metric spaces. ?Part Two explores the more abstract counterparts of the concepts outlined earlier in the text. The reader is introduced to the fundamental spaces of analysis, including Lp spaces, and the book successfully details how appropriate definitions of integration, continuity, and differentiation lead to a powerful and widely applicable foundation for further study of applied mathematics. The interrelation between measure theory, topology, and differentiation is then examined in the proof of the Multidimensional Substitution Formula. Further areas of coverage in this section include manifolds, Stokes' Theorem, Hilbert spaces, the convergence of Fourier series, and Riesz' Representation Theorem. ?Part Three provides an overview of the motivations for analysis as well as its applications in various subjects. A special focus on ordinary and partial differential equations presents some theoretical and practical challenges that exist in these areas. Topical coverage includes Navier-Stokes equations and the finite element method. Mathematical Analysis: A Concise Introduction includes an extensive index and over 900 exercises ranging in level of difficulty, from conceptual questions and adaptations of proofs to proofs with and without hints. These opportunities for reinforcement, along with the overall concise and well-organized treatment of analysis, make this book essential for readers in upper-undergraduate or beginning graduate mathematics courses who would like to build a solid foundation in analysis for further work in all analysis-based branches of mathematics.

Computation and Combinatorics in Dynamics Stochastics and Control

Computation and Combinatorics in Dynamics  Stochastics and Control
Author: Elena Celledoni,Giulia Di Nunno,Kurusch Ebrahimi-Fard,Hans Zanna Munthe-Kaas
Publsiher: Springer
Total Pages: 734
Release: 2019-01-13
Genre: Mathematics
ISBN: 9783030015930

Download Computation and Combinatorics in Dynamics Stochastics and Control Book in PDF, Epub and Kindle

The Abel Symposia volume at hand contains a collection of high-quality articles written by the world’s leading experts, and addressing all mathematicians interested in advances in deterministic and stochastic dynamical systems, numerical analysis, and control theory. In recent years we have witnessed a remarkable convergence between individual mathematical disciplines that approach deterministic and stochastic dynamical systems from mathematical analysis, computational mathematics and control theoretical perspectives. Breakthrough developments in these fields now provide a common mathematical framework for attacking many different problems related to differential geometry, analysis and algorithms for stochastic and deterministic dynamics. In the Abel Symposium 2016, which took place from August 16-19 in Rosendal near Bergen, leading researchers in the fields of deterministic and stochastic differential equations, control theory, numerical analysis, algebra and random processes presented and discussed the current state of the art in these diverse fields. The current Abel Symposia volume may serve as a point of departure for exploring these related but diverse fields of research, as well as an indicator of important current and future developments in modern mathematics.

Scientific Computation on Mathematical Problems and Conjectures

Scientific Computation on Mathematical Problems and Conjectures
Author: Richard S. Varga
Publsiher: SIAM
Total Pages: 128
Release: 1990-01-01
Genre: Mathematics
ISBN: 1611970113

Download Scientific Computation on Mathematical Problems and Conjectures Book in PDF, Epub and Kindle

Studies the use of scientific computation as a tool in attacking a number of mathematical problems and conjectures. In this case, scientific computation refers primarily to computations that are carried out with a large number of significant digits, for calculations associated with a variety of numerical techniques such as the (second) Remez algorithm in polynomial and rational approximation theory, Richardson extrapolation of sequences of numbers, the accurate finding of zeros of polynomials of large degree, and the numerical approximation of integrals by quadrature techniques. The goal of this book is not to delve into the specialized field dealing with the creation of robust and reliable software needed to implement these high-precision calculations, but rather to emphasize the enormous power that existing software brings to the mathematician's arsenal of weapons for attacking mathematical problems and conjectures. Scientific Computation on Mathematical Problems and Conjectures includes studies of the Bernstein Conjecture of 1913 in polynomial approximation theory, the "1/9" Conjecture of 1977 in rational approximation theory, the famous Riemann Hypothesis of 1859, and the Polya Conjecture of 1927. The emphasis of this monograph rests strongly on the interplay between hard analysis and high-precision calculations.