Mathematical Foundations of Finite Elements and Iterative Solvers

Mathematical Foundations of Finite Elements and Iterative Solvers
Author: SCI085000
Publsiher: SIAM
Total Pages: 186
Release: 2022-06-27
Genre: Mathematics
ISBN: 9781611977097

Download Mathematical Foundations of Finite Elements and Iterative Solvers Book in PDF, Epub and Kindle

“This book combines an updated look, at an advanced level, of the mathematical theory of the finite element method (including some important recent developments), and a presentation of many of the standard iterative methods for the numerical solution of the linear system of equations that results from finite element discretization, including saddle point problems arising from mixed finite element approximation. For the reader with some prior background in the subject, this text clarifies the importance of the essential ideas and provides a deeper understanding of how the basic concepts fit together.” — Richard S. Falk, Rutgers University “Students of applied mathematics, engineering, and science will welcome this insightful and carefully crafted introduction to the mathematics of finite elements and to algorithms for iterative solvers. Concise, descriptive, and entertaining, the text covers all of the key mathematical ideas and concepts dealing with finite element approximations of problems in mechanics and physics governed by partial differential equations while interweaving basic concepts on Sobolev spaces and basic theorems of functional analysis presented in an effective tutorial style.” — J. Tinsley Oden, The University of Texas at Austin This textbook describes the mathematical principles of the finite element method, a technique that turns a (linear) partial differential equation into a discrete linear system, often amenable to fast linear algebra. Reflecting the author’s decade of experience in the field, Mathematical Foundations of Finite Elements and Iterative Solvers examines the crucial interplay between analysis, discretization, and computations in modern numerical analysis; furthermore, it recounts historical developments leading to current state-of-the-art techniques. While self-contained, this textbook provides a clear and in-depth discussion of several topics, including elliptic problems, continuous Galerkin methods, iterative solvers, advection-diffusion problems, and saddle point problems. Accessible to readers with a beginning background in functional analysis and linear algebra, this text can be used in graduate-level courses on advanced numerical analysis, data science, numerical optimization, and approximation theory. Professionals in numerical analysis and finite element methods will also find the book of interest.

Finite Elements and Fast Iterative Solvers

Finite Elements and Fast Iterative Solvers
Author: Howard C. Elman,David J. Silvester,Andrew J. Wathen
Publsiher: Oxford University Press
Total Pages: 495
Release: 2014
Genre: Mathematics
ISBN: 9780199678792

Download Finite Elements and Fast Iterative Solvers Book in PDF, Epub and Kindle

This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory" provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.

Finite Elements and Fast Iterative Solvers

Finite Elements and Fast Iterative Solvers
Author: Howard Elman,David Silvester,Andy Wathen
Publsiher: OUP Oxford
Total Pages: 495
Release: 2014-06-19
Genre: Mathematics
ISBN: 9780191667923

Download Finite Elements and Fast Iterative Solvers Book in PDF, Epub and Kindle

This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.

Finite Element Solution of Boundary Value Problems

Finite Element Solution of Boundary Value Problems
Author: O. Axelsson,V. A. Barker
Publsiher: Academic Press
Total Pages: 453
Release: 2014-05-10
Genre: Mathematics
ISBN: 9781483260563

Download Finite Element Solution of Boundary Value Problems Book in PDF, Epub and Kindle

Finite Element Solution of Boundary Value Problems: Theory and Computation provides an introduction to both the theoretical and computational aspects of the finite element method for solving boundary value problems for partial differential equations. This book is composed of seven chapters and begins with surveys of the two kinds of preconditioning techniques, one based on the symmetric successive overrelaxation iterative method for solving a system of equations and a form of incomplete factorization. The subsequent chapters deal with the concepts from functional analysis of boundary value problems. These topics are followed by discussions of the Ritz method, which minimizes the quadratic functional associated with a given boundary value problem over some finite-dimensional subspace of the original space of functions. Other chapters are devoted to direct methods, including Gaussian elimination and related methods, for solving a system of linear algebraic equations. The final chapter continues the analysis of preconditioned conjugate gradient methods, concentrating on applications to finite element problems. This chapter also looks into the techniques for reducing rounding errors in the iterative solution of finite element equations. This book will be of value to advanced undergraduates and graduates in the areas of numerical analysis, mathematics, and computer science, as well as for theoretically inclined workers in engineering and the physical sciences.

Finite Elements

Finite Elements
Author: Dietrich Braess
Publsiher: Cambridge University Press
Total Pages: 374
Release: 2001-04-12
Genre: Mathematics
ISBN: 0521011957

Download Finite Elements Book in PDF, Epub and Kindle

"This definitive introduction to finite element methods has been updated thoroughly for this third edition, which features important new material for both research and application of the finite element method. The discussion of saddle point problems is a highlight of the book and has been elaborated to include many more non-standard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena." "Graduate students who do not necessarily have any particular background in differential equations, but require an introduction to finite element methods, will find the text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering."--BOOK JACKET.

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations
Author: A. K. Aziz
Publsiher: Unknown
Total Pages: 797
Release: 1972
Genre: Differential equations, Partial
ISBN: OCLC:911753463

Download The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Book in PDF, Epub and Kindle

Finite Element Methods and Their Applications

Finite Element Methods and Their Applications
Author: Zhangxin Chen
Publsiher: Springer Science & Business Media
Total Pages: 415
Release: 2005-10-14
Genre: Science
ISBN: 9783540280781

Download Finite Element Methods and Their Applications Book in PDF, Epub and Kindle

Introduce every concept in the simplest setting and to maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Contains unique recent developments of various finite elements such as nonconforming, mixed, discontinuous, characteristic, and adaptive finite elements, along with their applications. Describes unique recent applications of finite element methods to important fields such as multiphase flows in porous media and semiconductor modelling. Treats the three major types of partial differential equations, i.e., elliptic, parabolic, and hyperbolic equations.

The Mathematical Basis of Finite Element Methods with Applications to Partial Differential Equations

The Mathematical Basis of Finite Element Methods with Applications to Partial Differential Equations
Author: Institute of Mathematics and Its Applications
Publsiher: Oxford University Press, USA
Total Pages: 208
Release: 1984
Genre: Differential equations, Partial
ISBN: UCAL:B4527758

Download The Mathematical Basis of Finite Element Methods with Applications to Partial Differential Equations Book in PDF, Epub and Kindle

Combining theoretical insights with practical applications, this stimulating collection provides a state-of-the-art survey of the finite element method, one of the most powerful tools available for the solution of physical problems. Written by leading experts, this volume consider such topics as parabolic Galerkin methods, nonconforming elements, the treatment of singularities in elliptic boundary value problems, and conforming methods for self-adjount elliptic problems. This will be an invaluable basic reference for computational mathematicians and engineers who use finite element methods in academic or industrial research.