Method of Variation of Parameters for Dynamic Systems

Method of Variation of Parameters for Dynamic Systems
Author: V. Lakshmikantham
Publsiher: Routledge
Total Pages: 328
Release: 2019-09-10
Genre: Mathematics
ISBN: 9781351431965

Download Method of Variation of Parameters for Dynamic Systems Book in PDF, Epub and Kindle

Method of Variation of Parameters for Dynamic Systems presents a systematic and unified theory of the development of the theory of the method of variation of parameters, its unification with Lyapunov's method and typical applications of these methods. No other attempt has been made to bring all the available literature into one volume. This book is a clear exposition of this important topic in control theory, which is not covered by any other text. Such an exposition finally enables the comparison and contrast of the theory and the applications, thus facilitating further development in this fascinating field.

Differential Equations A Dynamical Systems Approach

Differential Equations  A Dynamical Systems Approach
Author: John H. Hubbard,Beverly H. West
Publsiher: Springer Science & Business Media
Total Pages: 374
Release: 1997-10-17
Genre: Mathematics
ISBN: 9780387972862

Download Differential Equations A Dynamical Systems Approach Book in PDF, Epub and Kindle

This corrected third printing retains the authors'main emphasis on ordinary differential equations. It is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. The authors have taken the view that a differential equations theory defines functions; the object of the theory is to understand the behaviour of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods, and the companion software, MacMath, is designed to bring these notions to life.

Ordinary Differential Equations and Integral Equations

Ordinary Differential Equations and Integral Equations
Author: C.T.H. Baker,G. Monegato,G. vanden Berghe
Publsiher: Gulf Professional Publishing
Total Pages: 562
Release: 2001-07-04
Genre: Juvenile Nonfiction
ISBN: 0444506004

Download Ordinary Differential Equations and Integral Equations Book in PDF, Epub and Kindle

/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods). John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?" Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices. The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour. Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems. Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions. Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions. Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods. Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory. Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages. Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields. Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems. Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems. Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems. Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions. The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect. Many phenomena incorporate noise, and the numerical solution of stochastic differential equations has developed as a relatively new item of study in the area. Keven Burrage, Pamela Burrage and Taketomo Mitsui review the way numerical methods for solving stochastic differential equations (SDE's) are constructed. One of the more recent areas to attract scrutiny has been the area of differential equations with after-effect (retarded, delay, or neutral delay differential equations) and in this volume we include a number of papers on evolutionary problems in this area. The paper of Genna Bocharov and Fathalla Rihan conveys the importance in mathematical biology of models using retarded differential equations. The contribution by Christopher Baker is intended to convey much of the background necessary for the application of numerical methods and includes some original results on stability and on the solution of approximating equations. Alfredo Bellen, Nicola Guglielmi and Marino Zennaro contribute to the analysis of stability of numerical solutions of nonlinear neutral differential equations. Koen Engelborghs, Tatyana Luzyanina, Dirk Roose, Neville Ford and Volker Wulf consider the numerics of bifurcation in delay differential equations. Evelyn Buckwar contributes a paper indicating the construction and analysis of a numerical strategy for stochastic delay differential equations (SDDEs). This volume contains contributions on both Volterra and Fredholm-type integral equations. Christopher Baker responded to a late challenge to craft a review of the theory of the basic numerics of Volterra integral and integro-differential equations. Simon Shaw and John Whiteman discuss Galerkin methods for a type of Volterra integral equation that arises in modelling viscoelasticity. A subclass of boundary-value problems for ordinary differential equation comprises eigenvalue problems such as Sturm-Liouville problems (SLP) and Schrödinger equations. Liviu Ixaru describes the advances made over the last three decades in the field of piecewise perturbation methods for the numerical solution of Sturm-Liouville problems in general and systems of Schrödinger equations in particular. Alan Andrew surveys the asymptotic correction method for regular Sturm-Liouville problems. Leon Greenberg and Marco Marletta survey methods for higher-order Sturm-Liouville problems. R. Moore in the 1960s first showed the feasibility of validated solutions of differential equations, that is, of computing guaranteed enclosures of solutions. Boundary integral equations. Numerical solution of integral equations associated with boundary-value problems has experienced continuing interest. Peter Junghanns and Bernd Silbermann present a selection of modern results concerning the numerical analysis of one-dimensional Cauchy singular integral equations, in particular the stability of operator sequences associated with different projection methods. Johannes Elschner and Ivan Graham summarize the most important results achieved in the last years about the numerical solution of one-dimensional integral equations of Mellin type of means of projection methods and, in particular, by collocation methods. A survey of results on quadrature methods for solving boundary integral equations is presented by Andreas Rathsfeld. Wolfgang Hackbusch and Boris Khoromski present a novel approach for a very efficient treatment of integral operators. Ernst Stephan examines multilevel methods for the h-, p- and hp- versions of the boundary element method, including pre-conditioning techniques. George Hsiao, Olaf Steinbach and Wolfgang Wendland analyze various boundary element methods employed in local discretization schemes.

Introduction to Differential Equations with Dynamical Systems

Introduction to Differential Equations with Dynamical Systems
Author: Stephen L. Campbell,Richard Haberman
Publsiher: Princeton University Press
Total Pages: 445
Release: 2011-10-14
Genre: Mathematics
ISBN: 9781400841325

Download Introduction to Differential Equations with Dynamical Systems Book in PDF, Epub and Kindle

Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

Optimal Estimation of Dynamic Systems

Optimal Estimation of Dynamic Systems
Author: John L. Crassidis,John L. Junkins
Publsiher: CRC Press
Total Pages: 606
Release: 2004-04-27
Genre: Mathematics
ISBN: 9780203509128

Download Optimal Estimation of Dynamic Systems Book in PDF, Epub and Kindle

Most newcomers to the field of linear stochastic estimation go through a difficult process in understanding and applying the theory.This book minimizes the process while introducing the fundamentals of optimal estimation. Optimal Estimation of Dynamic Systems explores topics that are important in the field of control where the signals receiv

Optimal Estimation of Dynamic Systems Second Edition

Optimal Estimation of Dynamic Systems  Second Edition
Author: John L. Crassidis,John L. Junkins
Publsiher: CRC Press
Total Pages: 752
Release: 2011-10-26
Genre: Mathematics
ISBN: 9781439839850

Download Optimal Estimation of Dynamic Systems Second Edition Book in PDF, Epub and Kindle

Optimal Estimation of Dynamic Systems, Second Edition highlights the importance of both physical and numerical modeling in solving dynamics-based estimation problems found in engineering systems. Accessible to engineering students, applied mathematicians, and practicing engineers, the text presents the central concepts and methods of optimal estimation theory and applies the methods to problems with varying degrees of analytical and numerical difficulty. Different approaches are often compared to show their absolute and relative utility. The authors also offer prototype algorithms to stimulate the development and proper use of efficient computer programs. MATLAB® codes for the examples are available on the book’s website. New to the Second Edition With more than 100 pages of new material, this reorganized edition expands upon the best-selling original to include comprehensive developments and updates. It incorporates new theoretical results, an entirely new chapter on advanced sequential state estimation, and additional examples and exercises. An ideal self-study guide for practicing engineers as well as senior undergraduate and beginning graduate students, the book introduces the fundamentals of estimation and helps newcomers to understand the relationships between the estimation and modeling of dynamical systems. It also illustrates the application of the theory to real-world situations, such as spacecraft attitude determination, GPS navigation, orbit determination, and aircraft tracking.

Controllability of Dynamic Systems

Controllability of Dynamic Systems
Author: Ara S. Avetisyan,Asatur Zh. Khurshudyan
Publsiher: Cambridge Scholars Publishing
Total Pages: 223
Release: 2018-04-03
Genre: Science
ISBN: 9781527509139

Download Controllability of Dynamic Systems Book in PDF, Epub and Kindle

The book is about the possibilities of involvement of the well-known Green’s function method in exact or approximate controllability analysis for dynamic systems. Due to existing extensions of the Green’s function notion to nonlinear systems, the approach developed here is valid for systems with both linear and nonlinear dynamics. The book offers a number of particular examples, covering specific issues that make the controllability analysis sophisticated, such as coordinate dependent characteristics, point sources, unbounded domains, higher dimensions, and specific nonlinearities. It also offers extensive numerical analysis, which reveals both advantages and drawbacks of the approach. As such, the book will be of interest to researchers interested in the theory and practice of control, as well as PhD and Master’s students.

The Integrated Test Analysis Process for Structural Dynamic Systems

The Integrated Test Analysis Process for Structural Dynamic Systems
Author: Robert Coppolino
Publsiher: Springer Nature
Total Pages: 148
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 9783031797293

Download The Integrated Test Analysis Process for Structural Dynamic Systems Book in PDF, Epub and Kindle

Over the past 60 years, the U.S. aerospace community has developed, refined, and standardized an integrated approach to structural dynamic model verification and validation. One name for this overall approach is the Integrated Test Analysis Process (ITAP) for structural dynamic systems. ITAP consists of seven sequential tasks, namely: (1) definition of test article finite element models; (2) systematic modal test planning; (3) measured data acquisition; (4) measured data analysis; (5) experimental modal analysis; (6) systematic test-analysis correlation; and (7) reconciliation of finite element models and modal test data. Steps 1, 2, and 7 rely strictly on mathematical model disciplines, and steps 3 and 4 rely on laboratory disciplines and techniques. Current industry practice of steps 5 and 6 calls for interaction of mathematical model and laboratory disciplines, which compromises the objectivity of both modeling and laboratory disciplines. This book addresses technical content, strategies, and key relevant experiences related to all steps of ITAP, except for measured data acquisition which is the specialized domain of highly experienced laboratory professionals who contend with mechanical and electrical practicalities of instrumentation, excitation hardware, and data collection systems.