Micromechanics of Flow in Solids

Micromechanics of Flow in Solids
Author: John Joseph Gilman
Publsiher: Unknown
Total Pages: 312
Release: 1969
Genre: Science
ISBN: UOM:39015013038933

Download Micromechanics of Flow in Solids Book in PDF, Epub and Kindle

Micromechanisms of Fracture and Fatigue

Micromechanisms of Fracture and Fatigue
Author: Jaroslav Pokluda,Pavel Šandera
Publsiher: Springer Science & Business Media
Total Pages: 296
Release: 2010-05-27
Genre: Technology & Engineering
ISBN: 9781849962667

Download Micromechanisms of Fracture and Fatigue Book in PDF, Epub and Kindle

Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittle/ductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications.

Micromechanics of Fracture and Damage

Micromechanics of Fracture and Damage
Author: Luc Dormieux,Djimedo Kondo
Publsiher: John Wiley & Sons
Total Pages: 332
Release: 2016-06-07
Genre: Technology & Engineering
ISBN: 9781848218635

Download Micromechanics of Fracture and Damage Book in PDF, Epub and Kindle

This book deals with the mechanics and physics of fractures at various scales. Based on advanced continuum mechanics of heterogeneous media, it develops a rigorous mathematical framework for single macrocrack problems as well as for the effective properties of microcracked materials. In both cases, two geometrical models of cracks are examined and discussed: the idealized representation of the crack as two parallel faces (the Griffith crack model), and the representation of a crack as a flat elliptic or ellipsoidal cavity (the Eshelby inhomogeneity problem). The book is composed of two parts: The first part deals with solutions to 2D and 3D problems involving a single crack in linear elasticity. Elementary solutions of cracks problems in the different modes are fully worked. Various mathematical techniques are presented, including Neuber-Papkovitch displacement potentials, complex analysis with conformal mapping and Eshelby-based solutions. The second part is devoted to continuum micromechanics approaches of microcracked materials in relation to methods and results presented in the first part. Various estimates and bounds of the effective elastic properties are presented. They are considered for the formulation and application of continuum micromechanics-based damage models.

Micromechanics

Micromechanics
Author: S. Nemat-Nasser,M. Hori
Publsiher: Elsevier
Total Pages: 708
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 9781483291512

Download Micromechanics Book in PDF, Epub and Kindle

A comprehensive overview is given in this book towards a fundamental understanding of the micromechanics of the overall response and failure modes of advanced materials, such as ceramics and ceramic and other composites. These advanced materials have become the focus of systematic and extensive research in recent times. The book consists of two parts. The first part reviews solids with microdefects such as cavities, cracks, and inclusions, as well as elastic composites. To render the book self-contained, the second part focuses on the fundamentals of continuum mechanics, particularly linear elasticity which forms the basis for the development of small deformation micromechanics. In Part 1, a fundamental and general framework for quantitative, rigorous analysis of the overall response and failure modes of microstructurally heterogeneous solids is systematically developed. These expressions apply to broad classes of materials with inhomogeneities and defects. While for the most part, the general framework is set within linear elasticity, the results directly translate to heterogeneous solids with rate-dependent or rate-independent inelastic constituents. This application is specifically referred to in various chapters. The general exact correlations obtained between the overall properties and the microstructure are then used together with simple models, to develop techniques for direct quantitative evaluation of the overall response which is generally described in terms of instantaneous overall moduli or compliance. The correlations among the corresponding results for a variety of problems are examined in great detail. The bounds as well as the specific results, include new observations and original developments, as well as an in-depth account of the state of the art. Part 2 focuses on Elasticity. The section on variational methods includes some new elements which should prove useful for application to advanced modeling, as well as solutions of composites and related heterogeneous bodies. A brief modern version of elements in vector and tensor algebra is provided which is particularly tailored to provide a background for the rest of this book. The data contained in this volume as Part 1 includes new results on many basic issues in micromechanics, which will be helpful to graduate students and researchers involved with rigorous physically-based modeling of overall properties of heterogeneous solids.

Applied mechanics reviews

Applied mechanics reviews
Author: Anonim
Publsiher: Unknown
Total Pages: 400
Release: 1948
Genre: Mechanics, Applied
ISBN: OSU:32435026160655

Download Applied mechanics reviews Book in PDF, Epub and Kindle

Computational Modelling of Concrete Structures

Computational Modelling of Concrete Structures
Author: Gunther Meschke,René de Borst,Herbert Mang,Nenad Bicanic
Publsiher: CRC Press
Total Pages: 949
Release: 2020-11-26
Genre: Mathematics
ISBN: 9781000155419

Download Computational Modelling of Concrete Structures Book in PDF, Epub and Kindle

This conference proceedings brings together the work of researchers and practising engineers concerned with computational modelling of complex concrete, reinforced concrete and prestressed concrete structures in engineering practice. The subjects considered include computational mechanics of concrete and other cementitious materials, including masonry. Advanced discretisation methods and microstructural aspects within multi-field and multi-scale settings are discussed, as well as modelling formulations and constitutive modelling frameworks and novel experimental programmes. The conference also considered the need for reliable, high-quality analysis and design of concrete structures in regard to safety-critical structures, with a view to adopting these in codes of practice or recommendations. The book is of special interest to researchers in computational mechanics, and industry experts in complex nonlinear simulations of concrete structures.

High Pressure Shock Compression of Solids

High Pressure Shock Compression of Solids
Author: J.R. Asay,M. Shahinpoor
Publsiher: Springer Science & Business Media
Total Pages: 399
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9781461209119

Download High Pressure Shock Compression of Solids Book in PDF, Epub and Kindle

This book presents a set of basic understandings of the behavior and response of solids to propagating shock waves. The propagation of shock waves in a solid body is accompanied by large compressions, decompression, and shear. Thus, the shear strength of solids and any inelastic response due to shock wave propagation is of the utmost importance. Furthermore, shock compres sion of solids is always accompanied by heating, and the rise of local tempera ture which may be due to both compression and dissipation. For many solids, under a certain range of impact pressures, a two-wave structure arises such that the first wave, called the elastic prescursor, travels with the speed of sound; and the second wave, called a plastic shock wave, travels at a slower speed. Shock-wave loading of solids is normally accomplished by either projectile impact, such as produced by guns or by explosives. The shock heating and compression of solids covers a wide range of temperatures and densities. For example, the temperature may be as high as a few electron volts (1 eV = 11,500 K) for very strong shocks and the densification may be as high as four times the normal density.

Micromechanics with Mathematica

Micromechanics with Mathematica
Author: Seiichi Nomura
Publsiher: John Wiley & Sons
Total Pages: 288
Release: 2016-02-22
Genre: Science
ISBN: 9781118385692

Download Micromechanics with Mathematica Book in PDF, Epub and Kindle

Demonstrates the simplicity and effectiveness of Mathematica as the solution to practical problems in composite materials. Designed for those who need to learn how micromechanical approaches can help understand the behaviour of bodies with voids, inclusions, defects, this book is perfect for readers without a programming background. Thoroughly introducing the concept of micromechanics, it helps readers assess the deformation of solids at a localized level and analyse a body with microstructures. The author approaches this analysis using the computer algebra system Mathematica, which facilitates complex index manipulations and mathematical expressions accurately. The book begins by covering the general topics of continuum mechanics such as coordinate transformations, kinematics, stress, constitutive relationship and material symmetry. Mathematica programming is also introduced with accompanying examples. In the second half of the book, an analysis of heterogeneous materials with emphasis on composites is covered. Takes a practical approach by using Mathematica, one of the most popular programmes for symbolic computation Introduces the concept of micromechanics with worked-out examples using Mathematica code for ease of understanding Logically begins with the essentials of the topic, such as kinematics and stress, before moving to more advanced areas Applications covered include the basics of continuum mechanics, Eshelby's method, analytical and semi-analytical approaches for materials with inclusions (composites) in both infinite and finite matrix media and thermal stresses for a medium with inclusions, all with Mathematica examples Features a problem and solution section on the book’s companion website, useful for students new to the programme