Modeling Control State Estimation and Path Planning Methods for Autonomous Multirotor Aerial Robots

Modeling  Control  State Estimation and Path Planning Methods for Autonomous Multirotor Aerial Robots
Author: Christos Papachristos,Tung Dang,Shehryar Khattak,Frank Mascarich,Nikhil Khedekar,Kostas Alexis
Publsiher: Unknown
Total Pages: 71
Release: 2018
Genre: Autonomous robots
ISBN: 1680835491

Download Modeling Control State Estimation and Path Planning Methods for Autonomous Multirotor Aerial Robots Book in PDF, Epub and Kindle

This review paper aims to provide an overview of core modeling, control, estimation, and planning concepts and approaches for micro aerial robots of the rotorcraft class. A comprehensive description of a set of methods that enable automated flight control, state estimation in GPS–denied environments, as well as path planning techniques for autonomous exploration is provided, and serves as a holistic point of reference for those interested in the field of unmanned aerial systems. Further discussion for other applications of aerial robots concludes this manuscript.

Planning and Decision Making for Aerial Robots

Planning and Decision Making for Aerial Robots
Author: Yasmina Bestaoui Sebbane
Publsiher: Springer Science & Business Media
Total Pages: 420
Release: 2014-01-10
Genre: Technology & Engineering
ISBN: 9783319037073

Download Planning and Decision Making for Aerial Robots Book in PDF, Epub and Kindle

This book provides an introduction to the emerging field of planning and decision making for aerial robots. An aerial robot is the ultimate form of Unmanned Aerial Vehicle, an aircraft endowed with built-in intelligence, requiring no direct human control and able to perform a specific task. It must be able to fly within a partially structured environment, to react and adapt to changing environmental conditions and to accommodate for the uncertainty that exists in the physical world. An aerial robot can be termed as a physical agent that exists and flies in the real 3D world, can sense its environment and act on it to achieve specific goals. So throughout this book, an aerial robot will also be termed as an agent. Fundamental problems in aerial robotics include the tasks of spatial motion, spatial sensing and spatial reasoning. Reasoning in complex environments represents a difficult problem. The issues specific to spatial reasoning are planning and decision making. Planning deals with the trajectory algorithmic development based on the available information, while decision making determines priorities and evaluates potential environmental uncertainties. The issues specific to planning and decision making for aerial robots in their environment are examined in this book and categorized as follows: motion planning, deterministic decision making, decision making under uncertainty and finally multi-robot planning. A variety of techniques are presented in this book, and a number of relevant case studies are examined. The topics considered in this book are multidisciplinary in nature and lie at the intersection of Robotics, Control Theory, Operational Research and Artificial Intelligence.

State Estimation for Robotics

State Estimation for Robotics
Author: Timothy D. Barfoot
Publsiher: Cambridge University Press
Total Pages: 381
Release: 2017-07-31
Genre: Computers
ISBN: 9781107159396

Download State Estimation for Robotics Book in PDF, Epub and Kindle

A modern look at state estimation, targeted at students and practitioners of robotics, with emphasis on three-dimensional applications.

Aerial Manipulation

Aerial Manipulation
Author: Matko Orsag,Christopher Korpela,Paul Oh,Stjepan Bogdan
Publsiher: Springer
Total Pages: 235
Release: 2017-09-19
Genre: Technology & Engineering
ISBN: 9783319610221

Download Aerial Manipulation Book in PDF, Epub and Kindle

This text is a thorough treatment of the rapidly growing area of aerial manipulation. It details all the design steps required for the modeling and control of unmanned aerial vehicles (UAV) equipped with robotic manipulators. Starting with the physical basics of rigid-body kinematics, the book gives an in-depth presentation of local and global coordinates, together with the representation of orientation and motion in fixed- and moving-coordinate systems. Coverage of the kinematics and dynamics of unmanned aerial vehicles is developed in a succession of popular UAV configurations for multirotor systems. Such an arrangement, supported by frequent examples and end-of-chapter exercises, leads the reader from simple to more complex UAV configurations. Propulsion-system aerodynamics, essential in UAV design, is analyzed through blade-element and momentum theories, analysis which is followed by a description of drag and ground-aerodynamic effects. The central part of the book is dedicated to aerial-manipulator kinematics, dynamics, and control. Based on foundations laid in the opening chapters, this portion of the book is a structured presentation of Newton–Euler dynamic modeling that results in forward and backward equations in both fixed- and moving-coordinate systems. The Lagrange–Euler approach is applied to expand the model further, providing formalisms to model the variable moment of inertia later used to analyze the dynamics of aerial manipulators in contact with the environment. Using knowledge from sensor data, insights are presented into the ways in which linear, robust, and adaptive control techniques can be applied in aerial manipulation so as to tackle the real-world problems faced by scholars and engineers in the design and implementation of aerial robotics systems. The book is completed by path and trajectory planning with vision-based examples for tracking and manipulation.

Theory and Applications for Control of Aerial Robots in Physical Interaction Through Tethers

Theory and Applications for Control of Aerial Robots in Physical Interaction Through Tethers
Author: Marco Tognon,Antonio Franchi
Publsiher: Unknown
Total Pages: 0
Release: 2021
Genre: Electronic Book
ISBN: 3030486605

Download Theory and Applications for Control of Aerial Robots in Physical Interaction Through Tethers Book in PDF, Epub and Kindle

This book studies how autonomous aerial robots physically interact with the surrounding environment. Intended to promote the advancement of aerial physical interaction, it analyzes a particular class of aerial robots: tethered aerial vehicles. By examining specific systems, while still considering the challenges of the general problem, it will help readers acquire the knowledge and expertise needed for the subsequent development of more general methods applicable to aerial physical interaction. The formal analysis covers topics ranging from control, state estimation, and motion planning, to experimental validation. Addressing both theoretical and technical aspects, the book is intended for a broad academic and industrial readership, including undergraduate students, researchers and engineers. It can be used as a teaching reference, or as the basis for product development.

Robot Operating System ROS

Robot Operating System  ROS
Author: Anis Koubaa
Publsiher: Springer
Total Pages: 605
Release: 2018-07-05
Genre: Technology & Engineering
ISBN: 9783319915906

Download Robot Operating System ROS Book in PDF, Epub and Kindle

Building on the successful first and second volumes, this book is the third volume of the Springer book on the Robot Operating System (ROS): The Complete Reference. The Robot Operating System is evolving from year to year with a wealth of new contributed packages and enhanced capabilities. Further, the ROS is being integrated into various robots and systems and is becoming an embedded technology in emerging robotics platforms. The objective of this third volume is to provide readers with additional and comprehensive coverage of the ROS and an overview of the latest achievements, trends and packages developed with and for it. Combining tutorials, case studies, and research papers, the book consists of sixteen chapters and is divided into five parts. Part 1 presents multi-robot systems with the ROS. In Part 2, four chapters deal with the development of unmanned aerial systems and their applications. In turn, Part 3 highlights recent work related to navigation, motion planning and control. Part 4 discusses recently contributed ROS packages for security, ROS2, GPU usage, and real-time processing. Lastly, Part 5 deals with new interfaces allowing users to interact with robots. Taken together, the three volumes of this book offer a valuable reference guide for ROS users, researchers, learners and developers alike. Its breadth of coverage makes it a unique resource.

Advances in Motion Sensing and Control for Robotic Applications

Advances in Motion Sensing and Control for Robotic Applications
Author: Farrokh Janabi-Sharifi,William Melek
Publsiher: Springer
Total Pages: 127
Release: 2019-06-15
Genre: Technology & Engineering
ISBN: 9783030173692

Download Advances in Motion Sensing and Control for Robotic Applications Book in PDF, Epub and Kindle

This book reports on advances in sensing, modeling and control methods for different robotic platforms such as multi-degree of freedom robotic arms, unmanned aerial vehicles and autonomous mobile platforms. Based on 2018 Symposium on Mechatronics, Robotics, and Control (SMTRC’18), held as part of the 2018 CSME International Congress, in York University, Toronto, Canada, the book covers a variety of topics, from filtering and state estimation to adaptive control of reconfigurable robots and more. Next-generation systems with advanced control, planning, perception and interaction capabilities will achieve functionalities far beyond today’s technology. Two key challenges remaining for advanced robot technologies are related to sensing and control in robotic systems. Advanced perception is needed to navigate changing environments. Adaptive and intelligent control systems must be developed to enable operation in unstructured and dynamic environments. The selected chapters in this book focus on both of the aforementioned areas and highlight the main trends and challenges in robot sensing and control. The first part of the book introduces chapters which focus on advanced perception and sensing for robotics applications. They include sensor filtering and state estimation for bipedal robots and motion capture systems analysis. The second part focuses on different modeling and control methods for robotic systems including flight control for UAVs, multi-variable robust control for modular and reconfigurable robotics and control for precision micromanipulation.

Design Modeling and Control of Aerial Robots for Physical Interaction and Manipulation

Design  Modeling and Control of Aerial Robots for Physical Interaction and Manipulation
Author: Burak Yüksel
Publsiher: Logos Verlag Berlin GmbH
Total Pages: 219
Release: 2017-06-10
Genre: Technology & Engineering
ISBN: 9783832544928

Download Design Modeling and Control of Aerial Robots for Physical Interaction and Manipulation Book in PDF, Epub and Kindle

Aerial robots, meaning robots with flying capabilities, are essentially robotic platforms, which are autonomously controlled via some sophisticated control engineering tools. Similar to aerial vehichles, they can overcome the gravitational forces thanks to their design and/or actuation type. What makes them different from the conventional aerial vehicles, is the level of their autonomy. Reducing the complexity for piloting of such robots/vehicles provide the human operator more freedom and comfort. With their increasing autonomy, they can perform many complicated tasks by their own (such as surveillance, monitoring, or inspection), leaving the human operator the most high-level decisions to be made, if necessary. In this way they can be operated in hazardous and challenging environments, which might posses high risks to the human health. Thanks to their wide range of usage, the ongoing researches on aerial robots is expected to have an increasing impact on the human life. Aerial Physical Interaction (APhI) is a case, in which the aerial robot exerts meaningful forces and torques (wrench) to its environment while preserving its stable flight. In this case, the robot does not try avoiding every obstacle in its environment, but prepare itself for embracing the effect of a physical interaction, furthermore turn this interaction into some meaningful robotic tasks. Aerial manipulation can be considered as a subset of APhI, where the flying robot is designed and controlled in purpose of manipulating its environment. A clear motivation of using aerial robots for physical interaction, is to benefit their great workspace and agility. Moreover, developing robots that can perform not only APhI but also aerial manipulation can bring the great workspace of the flying robots together with the vast dexterity of the manipulating arms. This thesis work is addressing the design, modeling and control problem of these aerial robots for the purpose of physical interaction and manipulation. Using the nonlinear mathematical models of the robots at hand, in this thesis several different control methods (IDA-PBC, Exact Linearization, Differential Flatness Based Control) for APhI and aerial manipulation tasks have been developed and proposed. Furthermore, novel design tools (e.g. new rigid/elastic manipulating arms, hardware, software) to be used together with miniature aerial robots are presented within this thesis, which contributes to the robotics society not only in terms of concrete theory but also practical implementation and experimental robotics.