Nonlinear Control of Robots and Unmanned Aerial Vehicles

Nonlinear Control of Robots and Unmanned Aerial Vehicles
Author: Ranjan Vepa
Publsiher: CRC Press
Total Pages: 704
Release: 2016-10-14
Genre: Technology & Engineering
ISBN: 9781315350301

Download Nonlinear Control of Robots and Unmanned Aerial Vehicles Book in PDF, Epub and Kindle

Nonlinear Control of Robots and Unmanned Aerial Vehicles: An Integrated Approach presents control and regulation methods that rely upon feedback linearization techniques. Both robot manipulators and UAVs employ operating regimes with large magnitudes of state and control variables, making such an approach vital for their control systems design. Numerous application examples are included to facilitate the art of nonlinear control system design, for both robotic systems and UAVs, in a single unified framework. MATLAB® and Simulink® are integrated to demonstrate the importance of computational methods and systems simulation in this process.

Nonlinear Control of Vehicles and Robots

Nonlinear Control of Vehicles and Robots
Author: Béla Lantos,Lőrinc Márton
Publsiher: Springer Science & Business Media
Total Pages: 479
Release: 2010-12-01
Genre: Technology & Engineering
ISBN: 9781849961226

Download Nonlinear Control of Vehicles and Robots Book in PDF, Epub and Kindle

Nonlinear Control of Vehicles and Robots develops a unified approach to the dynamic modeling of robots in terrestrial, aerial and marine environments. The main classes of nonlinear systems and stability methods are summarized and basic nonlinear control methods, useful in manipulator and vehicle control, are presented. Formation control of ground robots and ships is discussed. The book also deals with the modeling and control of robotic systems in the presence of non-smooth nonlinearities. Robust adaptive tracking control of robotic systems with unknown payload and friction in the presence of uncertainties is treated. Theoretical and practical aspects of the control algorithms under discussion are detailed. Examples are included throughout the book allowing the reader to apply the control and modeling techniques in their own research and development work. Some of these examples demonstrate state estimation based on the use of advanced sensors as part of the control system.

Nonlinear Control of Robots and Unmanned Aerial Vehicles

Nonlinear Control of Robots and Unmanned Aerial Vehicles
Author: Ranjan Vepa
Publsiher: CRC Press
Total Pages: 544
Release: 2016-10-14
Genre: Technology & Engineering
ISBN: 9781498767057

Download Nonlinear Control of Robots and Unmanned Aerial Vehicles Book in PDF, Epub and Kindle

Nonlinear Control of Robots and Unmanned Aerial Vehicles: An Integrated Approach presents control and regulation methods that rely upon feedback linearization techniques. Both robot manipulators and UAVs employ operating regimes with large magnitudes of state and control variables, making such an approach vital for their control systems design. Numerous application examples are included to facilitate the art of nonlinear control system design, for both robotic systems and UAVs, in a single unified framework. MATLAB® and Simulink® are integrated to demonstrate the importance of computational methods and systems simulation in this process.

Nonlinear Control of Fixed Wing UAVs with Time Varying and Unstructured Uncertainties

Nonlinear Control of Fixed Wing UAVs with Time Varying and Unstructured Uncertainties
Author: Michail G. Michailidis,Kimon P. Valavanis,Matthew J. Rutherford
Publsiher: Springer
Total Pages: 119
Release: 2021-02-22
Genre: Technology & Engineering
ISBN: 3030407187

Download Nonlinear Control of Fixed Wing UAVs with Time Varying and Unstructured Uncertainties Book in PDF, Epub and Kindle

This book introduces a comprehensive and mathematically rigorous controller design for families of nonlinear systems with time-varying parameters and unstructured uncertainties. Although the presented methodology is general, the specific family of systems considered is the latest, NextGen, unconventional fixed-wing unmanned aircraft with circulation control or morphing wings, or a combination of both. The approach considers various sources of model and parameter uncertainty, while the controller design depends not on a nominal plant model, but instead on a family of admissible plants. In contrast to existing controller designs that consider multiple models and multiple controllers, the proposed approach is based on the ‘one controller fits all models’ within the unstructured uncertainty interval. The book presents a modeling-based analysis and synthesis approach with additive uncertainty weighting functions for accurate realization of the candidate systems. This differs significantly from existing designs in that it is capable of handling time-varying characteristics. This research monograph is suitable for scientists, engineers, researchers and graduate students with a background in control system theory who are interested in complex engineering nonlinear systems.

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle
Author: Moussa Labbadi,Yassine Boukal,Mohamed Cherkaoui
Publsiher: Springer Nature
Total Pages: 263
Release: 2021-09-14
Genre: Technology & Engineering
ISBN: 9783030810146

Download Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle Book in PDF, Epub and Kindle

This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.

Motion Coordination for VTOL Unmanned Aerial Vehicles

Motion Coordination for VTOL Unmanned Aerial Vehicles
Author: Abdelkader Abdessameud,Abdelhamid Tayebi
Publsiher: Springer
Total Pages: 182
Release: 2013-05-29
Genre: Technology & Engineering
ISBN: 1447150953

Download Motion Coordination for VTOL Unmanned Aerial Vehicles Book in PDF, Epub and Kindle

Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems’ inputs, states measurements, and restrictions on the interconnection topology between the aerial vehicles in the team are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers and industrial engineers from robotics, control engineering and aerospace communities. It also serves as a complementary reading for graduate students involved in research related to flying robotics, aerospace, control of under-actuated systems, and nonlinear control theory

Autonomous Flying Robots

Autonomous Flying Robots
Author: Kenzo Nonami,Farid Kendoul,Satoshi Suzuki,Wei Wang,Daisuke Nakazawa
Publsiher: Springer Science & Business Media
Total Pages: 341
Release: 2010-09-15
Genre: Technology & Engineering
ISBN: 9784431538561

Download Autonomous Flying Robots Book in PDF, Epub and Kindle

The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.

Unmanned Robotic Systems and Applications

Unmanned Robotic Systems and Applications
Author: Mahmut Reyhanoglu,Geert De Cubber,Daniela Doroftei
Publsiher: BoD – Books on Demand
Total Pages: 112
Release: 2020-04-15
Genre: Technology & Engineering
ISBN: 9781789845662

Download Unmanned Robotic Systems and Applications Book in PDF, Epub and Kindle

This book presents recent studies of unmanned robotic systems and their applications. With its five chapters, the book brings together important contributions from renowned international researchers. Unmanned autonomous robots are ideal candidates for applications such as rescue missions, especially in areas that are difficult to access. Swarm robotics (multiple robots working together) is another exciting application of the unmanned robotics systems, for example, coordinated search by an interconnected group of moving robots for the purpose of finding a source of hazardous emissions. These robots can behave like individuals working in a group without a centralized control.