Nucleation in Condensed Matter

Nucleation in Condensed Matter
Author: Ken Kelton,Alan Lindsay Greer
Publsiher: Elsevier
Total Pages: 759
Release: 2010-03-19
Genre: Technology & Engineering
ISBN: 9780080912646

Download Nucleation in Condensed Matter Book in PDF, Epub and Kindle

In Nucleation in Condensed Matter, key theoretical models for nucleation are developed and experimental data are used to discuss their range of validity. A central aim of this book is to enable the reader, when faced with a phenomenon in which nucleation appears to play a role, to determine whether nucleation is indeed important and to develop a quantitative and predictive description of the nucleation behavior. The third section of the book examines nucleation processes in practical situations, ranging from solid state precipitation to nucleation in biological systems to nucleation in food and drink. Nucleation in Condensed Matter is a key reference for an advanced materials course in phase transformations. It is also an essential reference for researchers in the field. Unified treatment of key theories, experimental evaluations and case studies Complete derivation of key models Detailed discussion of experimental measurements Examples of nucleation in diverse systems

Nucleation Theory

Nucleation Theory
Author: Anonim
Publsiher: Springer
Total Pages: 334
Release: 2012-11-26
Genre: Electronic Book
ISBN: 9048136482

Download Nucleation Theory Book in PDF, Epub and Kindle

Nucleation Theory

Nucleation Theory
Author: V.I. Kalikmanov
Publsiher: Springer
Total Pages: 319
Release: 2012-11-28
Genre: Science
ISBN: 9789048136438

Download Nucleation Theory Book in PDF, Epub and Kindle

One of the most striking phenomena in condensed matter physics is the occurrence of abrupt transitions in the structure of a substance at certain temperatures or pressures. These are first order phase transitions, and examples such as the freezing of water are familiar in everyday life. The conditions at which the transformation takes place can sometimes vary. For example, the freezing point of water is not always 0°C, but the liquid can be supercooled considerably if it is pure enough and treated carefully. The reason for this phenomenon is nucleation. This monograph covers all major available routes of theoretical research of nucleation phenomena (phenomenological models, semi-phenomenological theories, density functional theories, microscopic and semi-microscopic approaches), with emphasis on the formation of liquid droplets from a metastable vapor. Also, it illustrates the application of these various approaches to experimentally relevant problems. In spite of the familiarity of the involved phenomena, it is still impossible to calculate nucleation accurately, as the properties and the kinetics of the daughter phase are insufficiently well known. Existing theories based upon classical nucleation theory have on the whole explained the trends in behavior correctly. However they often fail spectacularly to account for new data, in particular in the case of binary or, more generally, multi-component nucleation. The current challenge of this book is to go beyond such classical models and provide a more satisfactory theory by using density functional theory and microscopic computer simulations in order to describe the properties of small clusters. Also, semi-phenomenological models are proposed, which attempt to relate the properties of small clusters to known properties of the bulk phases. This monograph is an introduction as well as a compendium to researchers in soft condensed matter physics and chemical physics, graduate and post-graduate students in physics and chemistry starting on research in the area of nucleation, and to experimentalists wishing to gain a better understanding of the efforts being made to account for their data.

Nucleation and Crystal Growth

Nucleation and Crystal Growth
Author: Keshra Sangwal
Publsiher: John Wiley & Sons
Total Pages: 506
Release: 2018-10-16
Genre: Science
ISBN: 9781119461579

Download Nucleation and Crystal Growth Book in PDF, Epub and Kindle

A unique text presenting practical information on the topic of nucleation and crystal growth processes from metastable solutions and melts Nucleation and Crystal Growth is a groundbreaking text thatoffers an overview and description of the processes and phenomena associated with metastability of solutions and melts. The author—a noted expert in the field—puts the emphasis on low-temperature solutions that are typically involved in crystallization in a wide range of industries. The text begins with a review of the basic knowledge of solutions and the fundamentals of crystallization processes. The author then explores topics related to the metastable state of solutions and melts from the standpoint of three-dimensional nucleation and crystal growth. Nucleation and Crystal Growth is the first text that contains a unified description and discussion of the many processes and phenomena occurring in the metastable zone of solutions and melts from the consideration of basic concepts of structure of crystallization. This important text: Outlines an interdisciplinary approach to the topic and offers an essential guide for crystal growth practitioners in materials science, physics, and chemical engineering Contains a comprehensive content that details the crystallization processes starting from the initial solutions and melts, all the way through nucleation, to the final crystal products Presents a unique focus and is the first book on understanding, and exploiting, metastability of solutions and melts in crystallization processes Written for specialists and researchers in the fields of materials science, condensed matter physics, and chemical engineering. Nucleation and Crystal Growth is a practical resource filled with hands-on knowledge of nucleation and crystal growth processes from metastable solutions and melts.

Introduction to the Theory of Soft Matter

Introduction to the Theory of Soft Matter
Author: Jonathan V. Selinger
Publsiher: Springer
Total Pages: 185
Release: 2015-08-19
Genre: Science
ISBN: 9783319210544

Download Introduction to the Theory of Soft Matter Book in PDF, Epub and Kindle

This book presents the theory of soft matter to students at the advanced undergraduate or beginning graduate level. It provides a basic introduction to theoretical physics as applied to soft matter, explaining the concepts of symmetry, broken symmetry, and order parameters; phases and phase transitions; mean-field theory; and the mathematics of variational calculus and tensors. It is written in an informal, conversational style, which is accessible to students from a diverse range of backgrounds. The book begins with a simple “toy model” to demonstrate the physical significance of free energy. It then introduces two standard theories of phase transitions—the Ising model for ferromagnetism and van der Waals theory of gases and liquids—and uses them to illustrate principles of statistical mechanics. From those examples, it moves on to discuss order, disorder, and broken symmetry in many states of matter, and to explain the theoretical methods that are used to model the phenomena. It concludes with a chapter on liquid crystals, which brings together all of these physical and mathematical concepts. The book is accompanied online by a set of “interactive figures”—some allow readers to change parameters and see what happens to a graph, some allow readers to rotate a plot or other graphics in 3D, and some do both. These interactive figures help students to develop their intuition for the physical meaning of equations. This book will prepare advanced undergraduate or early graduate students to go into more advanced theoretical studies. It will also equip students going into experimental soft matter science to be fully conversant with the theoretical aspects and have effective collaborations with theorists.

Kinetic Theory of Nucleation

Kinetic Theory of Nucleation
Author: Eli Ruckenstein,Gersh Berim
Publsiher: CRC Press
Total Pages: 476
Release: 2016-06-20
Genre: Science
ISBN: 9781138032170

Download Kinetic Theory of Nucleation Book in PDF, Epub and Kindle

Explore a Kinetic Approach to the Description of Nucleation – An Alternative to the Classical Nucleation Theory Kinetic Theory of Nucleation presents an alternative to the classical theory of nucleation in gases and liquids—the kinetic nucleation theory of Ruckenstein–Narsimhan–Nowakowski (RNNT). RNNT uses the kinetic theory of fluids to calculate the rate of evaporation of molecules from clusters, and unlike the classical nucleation theory (CNT), does not require macroscopic thermodynamics or the detailed balance principle. The book compares the rates of evaporation of molecules from—and condensation on—the surface of a nucleus of a new phase, and explains how this alternate approach can provide much higher nucleation rates than the CNT. It applies RNNT to various case studies that include the liquid-to-solid and vapor-to-liquid phase transitions, binary nucleation, heterogeneous nucleation, nucleation on soluble particles and protein folding. It also describes the system, introduces the basic equations of the kinetic theory, and defines a new model for the nucleation mechanism of protein folding. Adaptable to coursework as well as self-study, this insightful book: Uses a kinetic approach to calculate the rate of growth and decay of a cluster Includes description of vapor-to-liquid and liquid-to-solid nucleation Outlines the application of density-functional theory (DFT) methods to nucleation Proposes the combination of the new kinetic theory of nucleation with the DFT methods Illustrates the new theory with numerical calculations Describes the model for the nucleation mechanism of protein folding, and more A comprehensive guide dedicated to the kinetic theory of nucleation and cluster growth, Kinetic Theory of Nucleation emphasizes the basic concepts of the kinetic nucleation theory, incorporates findings developed from years of research and experience, and is written by highly-regarded experts.

Condensed Matter

Condensed Matter
Author: M. P. Das
Publsiher: Nova Publishers
Total Pages: 432
Release: 2007
Genre: Science
ISBN: 1600210228

Download Condensed Matter Book in PDF, Epub and Kindle

Condensed matter is one of the most active fields of physics, with a stream of discoveries in areas from superfluidity and magnetism to the optical, electronic and mechanical properties of materials such as semiconductors, polymers and carbon nanotubes. It includes the study of well-characterised solid surfaces, interfaces and nanostructures as well as studies of molecular liquids (molten salts, ionic solutions, liquid metals and semiconductors) and soft matter systems (colloidal suspensions, polymers, surfactants, foams, liquid crystals, membranes, biomolecules etc) including glasses and biological aspects of soft matter. This book presents state-of-the-art research in this exciting field.

Soft Matter Self Assembly

Soft Matter Self Assembly
Author: C.N. Likos,F. Sciortino,E. Zaccarelli
Publsiher: IOS Press
Total Pages: 494
Release: 2016-07-14
Genre: SCIENCE
ISBN: 9781614996620

Download Soft Matter Self Assembly Book in PDF, Epub and Kindle

Self-assembly is one of the key concepts in contemporary soft condensed matter. It is an umbrella term which encompasses the various modes of spontaneous organization of micrometer-and submicrometer-sized particles into ordered structures of various degrees of complexity, yet it often relies on remarkably simple interactions and mechanisms. Self-assembly is one of the key principles used by nature to construct living matter, where it frequently takes place in a hierarchical fashion. This book contains the lectures from the Enrico Fermi summer school: Soft Matter Self-assembly, held in Varenna, Italy, in June and July 2015. The primary aim of the school was to cover the most exciting modern aspects of self-assembly in soft condensed matter physics, and to enable Ph.D. students and postdocs to engage with some of the most exciting and current topics in the physics of colloids through a series of mini-courses and seminars hosted by leading figures in the field. Subjects covered include: colloids with directional bonding; pathways of self-organization; self-assembly hydrodynamics; polymer structure and dynamics; liquid-crystal colloid dispersions; and self-organizing nanosystems. The proceedings also include two reprints from Reviews of Modern Physics, and will be of interest to both students and experts in the field.