Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R
Author: James P Howard, II
Publsiher: CRC Press
Total Pages: 257
Release: 2017-07-12
Genre: Mathematics
ISBN: 9781498723640

Download Computational Methods for Numerical Analysis with R Book in PDF, Epub and Kindle

Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.

Numerical Analysis Using R

Numerical Analysis Using R
Author: Graham W. Griffiths
Publsiher: Cambridge University Press
Total Pages: 637
Release: 2016-04-26
Genre: Mathematics
ISBN: 9781107115613

Download Numerical Analysis Using R Book in PDF, Epub and Kindle

This book presents the latest numerical solutions to initial value problems and boundary valu problems described by ODES (Ordinary differencial equations) and PDEs (partiral differential equations). The primary focus in numerical solutions to initial value problems (IVPs) and boundary value problems (BVPs).

Using R for Numerical Analysis in Science and Engineering

Using R for Numerical Analysis in Science and Engineering
Author: Victor A. Bloomfield
Publsiher: CRC Press
Total Pages: 362
Release: 2018-09-03
Genre: Mathematics
ISBN: 9781315360492

Download Using R for Numerical Analysis in Science and Engineering Book in PDF, Epub and Kindle

Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.

Using R for Numerical Analysis in Science and Engineering

Using R for Numerical Analysis in Science and Engineering
Author: Victor A. Bloomfield
Publsiher: CRC Press
Total Pages: 359
Release: 2018-09-03
Genre: Mathematics
ISBN: 9781315362861

Download Using R for Numerical Analysis in Science and Engineering Book in PDF, Epub and Kindle

Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.

Numerical Analysis for Statisticians

Numerical Analysis for Statisticians
Author: Kenneth Lange
Publsiher: Springer Science & Business Media
Total Pages: 606
Release: 2010-05-17
Genre: Business & Economics
ISBN: 9781441959454

Download Numerical Analysis for Statisticians Book in PDF, Epub and Kindle

Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.

Numerical Ecology with R

Numerical Ecology with R
Author: Daniel Borcard,François Gillet,Pierre Legendre
Publsiher: Springer
Total Pages: 435
Release: 2018-03-19
Genre: Mathematics
ISBN: 9783319714042

Download Numerical Ecology with R Book in PDF, Epub and Kindle

This new edition of Numerical Ecology with R guides readers through an applied exploration of the major methods of multivariate data analysis, as seen through the eyes of three ecologists. It provides a bridge between a textbook of numerical ecology and the implementation of this discipline in the R language. The book begins by examining some exploratory approaches. It proceeds logically with the construction of the key building blocks of most methods, i.e. association measures and matrices, and then submits example data to three families of approaches: clustering, ordination and canonical ordination. The last two chapters make use of these methods to explore important and contemporary issues in ecology: the analysis of spatial structures and of community diversity. The aims of methods thus range from descriptive to explanatory and predictive and encompass a wide variety of approaches that should provide readers with an extensive toolbox that can address a wide palette of questions arising in contemporary multivariate ecological analysis. The second edition of this book features a complete revision to the R code and offers improved procedures and more diverse applications of the major methods. It also highlights important changes in the methods and expands upon topics such as multiple correspondence analysis, principal response curves and co-correspondence analysis. New features include the study of relationships between species traits and the environment, and community diversity analysis. This book is aimed at professional researchers, practitioners, graduate students and teachers in ecology, environmental science and engineering, and in related fields such as oceanography, molecular ecology, agriculture and soil science, who already have a background in general and multivariate statistics and wish to apply this knowledge to their data using the R language, as well as people willing to accompany their disciplinary learning with practical applications. People from other fields (e.g. geology, geography, paleoecology, phylogenetics, anthropology, the social and education sciences, etc.) may also benefit from the materials presented in this book. Users are invited to use this book as a teaching companion at the computer. All the necessary data files, the scripts used in the chapters, as well as extra R functions and packages written by the authors of the book, are available online (URL: http://adn.biol.umontreal.ca/~numericalecology/numecolR/).

Introduction to Numerical Analysis

Introduction to Numerical Analysis
Author: J. Stoer,R. Bulirsch
Publsiher: Springer Science & Business Media
Total Pages: 674
Release: 2013-03-09
Genre: Mathematics
ISBN: 9781475722727

Download Introduction to Numerical Analysis Book in PDF, Epub and Kindle

On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.

Numerical Methods for Nonlinear Engineering Models

Numerical Methods for Nonlinear Engineering Models
Author: John R. Hauser
Publsiher: Springer Science & Business Media
Total Pages: 1013
Release: 2009-03-24
Genre: Technology & Engineering
ISBN: 9781402099205

Download Numerical Methods for Nonlinear Engineering Models Book in PDF, Epub and Kindle

There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.