Numerical Approximation of Ordinary Differential Problems

Numerical Approximation of Ordinary Differential Problems
Author: Raffaele D'Ambrosio
Publsiher: Springer Nature
Total Pages: 391
Release: 2023-09-26
Genre: Mathematics
ISBN: 9783031313431

Download Numerical Approximation of Ordinary Differential Problems Book in PDF, Epub and Kindle

This book is focused on the numerical discretization of ordinary differential equations (ODEs), under several perspectives. The attention is first conveyed to providing accurate numerical solutions of deterministic problems. Then, the presentation moves to a more modern vision of numerical approximation, oriented to reproducing qualitative properties of the continuous problem along the discretized dynamics over long times. The book finally performs some steps in the direction of stochastic differential equations (SDEs), with the intention of offering useful tools to generalize the techniques introduced for the numerical approximation of ODEs to the stochastic case, as well as of presenting numerical issues natively introduced for SDEs. The book is the result of an intense teaching experience as well as of the research carried out in the last decade by the author. It is both intended for students and instructors: for the students, this book is comprehensive and rather self-contained; for the instructors, there is material for one or more monographic courses on ODEs and related topics. In this respect, the book can be followed in its designed path and includes motivational aspects, historical background, examples and a software programs, implemented in Matlab, that can be useful for the laboratory part of a course on numerical ODEs/SDEs. The book also contains the portraits of several pioneers in the numerical discretization of differential problems, useful to provide a framework to understand their contributes in the presented fields. Last, but not least, rigor joins readability in the book.

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations
Author: David F. Griffiths,Desmond J. Higham
Publsiher: Springer Science & Business Media
Total Pages: 274
Release: 2010-11-11
Genre: Mathematics
ISBN: 9780857291486

Download Numerical Methods for Ordinary Differential Equations Book in PDF, Epub and Kindle

Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations
Author: J. C. Butcher
Publsiher: John Wiley & Sons
Total Pages: 546
Release: 2016-08-29
Genre: Mathematics
ISBN: 9781119121503

Download Numerical Methods for Ordinary Differential Equations Book in PDF, Epub and Kindle

A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world’s leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering.

Numerical Methods for Initial Value Problems in Ordinary Differential Equations

Numerical Methods for Initial Value Problems in Ordinary Differential Equations
Author: Simeon Ola Fatunla
Publsiher: Academic Press
Total Pages: 308
Release: 2014-05-10
Genre: Mathematics
ISBN: 9781483269269

Download Numerical Methods for Initial Value Problems in Ordinary Differential Equations Book in PDF, Epub and Kindle

Numerical Method for Initial Value Problems in Ordinary Differential Equations deals with numerical treatment of special differential equations: stiff, stiff oscillatory, singular, and discontinuous initial value problems, characterized by large Lipschitz constants. The book reviews the difference operators, the theory of interpolation, first integral mean value theorem, and numerical integration algorithms. The text explains the theory of one-step methods, the Euler scheme, the inverse Euler scheme, and also Richardson's extrapolation. The book discusses the general theory of Runge-Kutta processes, including the error estimation, and stepsize selection of the R-K process. The text evaluates the different linear multistep methods such as the explicit linear multistep methods (Adams-Bashforth, 1883), the implicit linear multistep methods (Adams-Moulton scheme, 1926), and the general theory of linear multistep methods. The book also reviews the existing stiff codes based on the implicit/semi-implicit, singly/diagonally implicit Runge-Kutta schemes, the backward differentiation formulas, the second derivative formulas, as well as the related extrapolation processes. The text is intended for undergraduates in mathematics, computer science, or engineering courses, andfor postgraduate students or researchers in related disciplines.

Nonlinear Ordinary Differential Equations

Nonlinear Ordinary Differential Equations
Author: Martin Hermann,Masoud Saravi
Publsiher: Springer
Total Pages: 310
Release: 2016-05-09
Genre: Mathematics
ISBN: 9788132228127

Download Nonlinear Ordinary Differential Equations Book in PDF, Epub and Kindle

The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
Author: Uri M. Ascher,Robert M. M. Mattheij,Robert D. Russell
Publsiher: SIAM
Total Pages: 620
Release: 1994-12-01
Genre: Mathematics
ISBN: 1611971233

Download Numerical Solution of Boundary Value Problems for Ordinary Differential Equations Book in PDF, Epub and Kindle

This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations
Author: L.F. Shampine
Publsiher: Routledge
Total Pages: 632
Release: 2018-10-24
Genre: Mathematics
ISBN: 9781351427555

Download Numerical Solution of Ordinary Differential Equations Book in PDF, Epub and Kindle

This new work is an introduction to the numerical solution of the initial value problem for a system of ordinary differential equations. The first three chapters are general in nature, and chapters 4 through 8 derive the basic numerical methods, prove their convergence, study their stability and consider how to implement them effectively. The book focuses on the most important methods in practice and develops them fully, uses examples throughout, and emphasizes practical problem-solving methods.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations
Author: L. Fox
Publsiher: Springer Science & Business Media
Total Pages: 259
Release: 2012-12-06
Genre: Mathematics
ISBN: 9789400931299

Download Numerical Solution of Ordinary Differential Equations Book in PDF, Epub and Kindle

Nearly 20 years ago we produced a treatise (of about the same length as this book) entitled Computing methods for scientists and engineers. It was stated that most computation is performed by workers whose mathematical training stopped somewhere short of the 'professional' level, and that some books are therefore needed which use quite simple mathematics but which nevertheless communicate the essence of the 'numerical sense' which is exhibited by the real computing experts and which is surely needed, at least to some extent, by all who use modern computers and modern numerical software. In that book we treated, at no great length, a variety of computational problems in which the material on ordinary differential equations occupied about 50 pages. At that time it was quite common to find books on numerical analysis, with a little on each topic ofthat field, whereas today we are more likely to see similarly-sized books on each major topic: for example on numerical linear algebra, numerical approximation, numerical solution ofordinary differential equations, numerical solution of partial differential equations, and so on. These are needed because our numerical education and software have improved and because our relevant problems exhibit more variety and more difficulty. Ordinary differential equa tions are obvious candidates for such treatment, and the current book is written in this sense.