Introduction to Numerical Methods in Differential Equations

Introduction to Numerical Methods in Differential Equations
Author: Mark H. Holmes
Publsiher: Springer Science & Business Media
Total Pages: 248
Release: 2007-04-05
Genre: Mathematics
ISBN: 9780387681214

Download Introduction to Numerical Methods in Differential Equations Book in PDF, Epub and Kindle

This book shows how to derive, test and analyze numerical methods for solving differential equations, including both ordinary and partial differential equations. The objective is that students learn to solve differential equations numerically and understand the mathematical and computational issues that arise when this is done. Includes an extensive collection of exercises, which develop both the analytical and computational aspects of the material. In addition to more than 100 illustrations, the book includes a large collection of supplemental material: exercise sets, MATLAB computer codes for both student and instructor, lecture slides and movies.

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations
Author: Zhilin Li,Zhonghua Qiao,Tao Tang
Publsiher: Cambridge University Press
Total Pages: 305
Release: 2017-11-30
Genre: Mathematics
ISBN: 9781107163225

Download Numerical Solution of Differential Equations Book in PDF, Epub and Kindle

A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations
Author: Kendall Atkinson,Weimin Han,David E. Stewart
Publsiher: John Wiley & Sons
Total Pages: 272
Release: 2011-10-24
Genre: Mathematics
ISBN: 9781118164525

Download Numerical Solution of Ordinary Differential Equations Book in PDF, Epub and Kindle

A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations
Author: J.R. Dormand
Publsiher: CRC Press
Total Pages: 385
Release: 2018-05-04
Genre: Mathematics
ISBN: 9781351083553

Download Numerical Methods for Differential Equations Book in PDF, Epub and Kindle

With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations
Author: Peter E. Kloeden,Eckhard Platen
Publsiher: Springer Science & Business Media
Total Pages: 666
Release: 2013-04-17
Genre: Mathematics
ISBN: 9783662126165

Download Numerical Solution of Stochastic Differential Equations Book in PDF, Epub and Kindle

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations
Author: David F. Griffiths,Desmond J. Higham
Publsiher: Springer Science & Business Media
Total Pages: 274
Release: 2010-11-11
Genre: Mathematics
ISBN: 9780857291486

Download Numerical Methods for Ordinary Differential Equations Book in PDF, Epub and Kindle

Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method
Author: Claes Johnson
Publsiher: Courier Corporation
Total Pages: 290
Release: 2012-05-23
Genre: Mathematics
ISBN: 9780486131597

Download Numerical Solution of Partial Differential Equations by the Finite Element Method Book in PDF, Epub and Kindle

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

The Numerical Solution of Ordinary and Partial Differential Equations

The Numerical Solution of Ordinary and Partial Differential Equations
Author: Granville Sewell
Publsiher: World Scientific
Total Pages: 348
Release: 2014-12-16
Genre: Mathematics
ISBN: 9789814635110

Download The Numerical Solution of Ordinary and Partial Differential Equations Book in PDF, Epub and Kindle

This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland