Optical Characterization of Plasmonic Nanostructures Near Field Imaging of the Magnetic Field of Light

Optical Characterization of Plasmonic Nanostructures  Near Field Imaging of the Magnetic Field of Light
Author: Denitza Denkova
Publsiher: Springer
Total Pages: 88
Release: 2016-04-20
Genre: Science
ISBN: 9783319287935

Download Optical Characterization of Plasmonic Nanostructures Near Field Imaging of the Magnetic Field of Light Book in PDF, Epub and Kindle

This thesis focuses on a means of obtaining, for the first time, full electromagnetic imaging of photonic nanostructures. The author also develops a unique practical simulation framework which is used to confirm the results. The development of innovative photonic devices and metamaterials with tailor-made functionalities depends critically on our capability to characterize them and understand the underlying light-matter interactions. Thus, imaging all components of the electromagnetic light field at nanoscale resolution is of paramount importance in this area. This challenge is answered by demonstrating experimentally that a hollow-pyramid aperture probe SNOM can directly image the horizontal magnetic field of light in simple plasmonic antennas – rod, disk and ring. These results are confirmed by numerical simulations, showing that the probe can be approximated, to first order, by a magnetic point-dipole source. This approximation substantially reduces the simulation time and complexity and facilitates the otherwise controversial interpretation of near-field images. The validated technique is used to study complex plasmonic antennas and to explore new opportunities for their engineering and characterization.

Plasmonic Devices Employing Extreme Light Concentration

Plasmonic Devices Employing Extreme Light Concentration
Author: Ragip Pala
Publsiher: Stanford University
Total Pages: 95
Release: 2010
Genre: Electronic Book
ISBN: STANFORD:kx512px7809

Download Plasmonic Devices Employing Extreme Light Concentration Book in PDF, Epub and Kindle

The development of integrated electronic and photonic circuits has led to remarkable data processing and transport capabilities that permeate almost every facet of our daily lives. Scaling these devices to smaller and smaller dimensions has enabled faster, more power efficient and inexpensive components but has also brought about a myriad of new challenges. One very important challenge is the growing size mismatch between electronic and photonic components. To overcome this challenge, we will need to develop radically new device technologies that can facilitate information transport between nanoscale components at optical frequencies and form a bridge between the world of nano-electronic and micro-photonics. Plasmonics is an exciting new field of science and technology that aims to exploit the unique optical properties of metallic nanostructures to gain a new level of control over light-matter interactions. The use of nanometallic (plasmonic) structures may help bridge the size gap between the two technologies and enable an increased synergy between chip-scale electronics and photonics. In the first part of this dissertation we analyze the performance of a surface plasmon-polariton all-optical switch that combines the unique physical properties of small molecules and metallic (plasmonic) nanostructures. The switch consists of a pair of gratings defined on an aluminum film coated with a thin layer of photochromic (PC) molecules. The first grating couples a signal beam consisting of free space photons to SPPs that interact effectively with the PC molecules. These molecules can reversibly be switched between transparent and absorbing states using a free space optical pump. In the transparent (signal "on") state, the SPPs freely propagate through the molecular layer, and in the absorbing (signal "off") state, the SPPs are strongly attenuated. The second grating serves to decouple the SPPs back into a free space optical beam, enabling measurement of the modulated signal with a far-field detector. We confirm and quantify the switching behavior of the PC molecules by using a surface plasmon resonance spectroscopy. The quantitative experimental and theoretical analysis of the nonvolatile switching behavior guides the design of future nanoscale optically or electrically pumped optical switches. In the second part of the dissertation we provide a critical assessment of the opportunities for use of plasmonic nanostructures in thin film solar cell technology. Thin-film solar cells have attracted significant attention as they provide a viable pathway towards reduced materials and processing costs. Unfortunately, the materials quality and resulting energy conversion efficiencies of such cells is still limiting their rapid large-scale implementation. The low efficiencies are a direct result of the large mismatch between electronic and photonic length scales in these devices; the absorption depth of light in popular PV semiconductors tends to be longer than the electronic (minority carrier) diffusion length in deposited thin-film materials. As a result, charge extraction from optically thick cells is challenging due to carrier recombination in the bulk of the semiconductor. We discuss how light absorption could be improved in ultra-thin layers of active material making use of large scattering cross sections of plasmonic structures. We present a combined computational-experimental study aimed at optimizing plasmon-enhanced absorption using periodic and non-periodic metal nanostructure arrays.

Near Field Mediated Photon Electron Interactions

Near Field Mediated Photon   Electron Interactions
Author: Nahid Talebi
Publsiher: Springer Nature
Total Pages: 267
Release: 2019-11-16
Genre: Science
ISBN: 9783030338169

Download Near Field Mediated Photon Electron Interactions Book in PDF, Epub and Kindle

This book focuses on the use of novel electron microscopy techniques to further our understanding of the physics behind electron–light interactions. It introduces and discusses the methodologies for advancing the field of electron microscopy towards a better control of electron dynamics with significantly improved temporal resolutions, and explores the burgeoning field of nanooptics – the physics of light–matter interaction at the nanoscale – whose practical applications transcend numerous fields such as energy conversion, control of chemical reactions, optically induced phase transitions, quantum cryptography, and data processing. In addition to describing analytical and numerical techniques for exploring the theoretical basis of electron–light interactions, the book showcases a number of relevant case studies, such as optical modes in gold tapers probed by electron beams and investigations of optical excitations in the topological insulator Bi2Se3. The experiments featured provide an impetus to develop more relevant theoretical models, benchmark current approximations, and even more characterization tools based on coherent electron–light interactions.

Optical Properties of Nanostructured Metallic Systems

Optical Properties of Nanostructured Metallic Systems
Author: Sergio G. Rodrigo
Publsiher: Springer Science & Business Media
Total Pages: 177
Release: 2011-10-08
Genre: Science
ISBN: 9783642230851

Download Optical Properties of Nanostructured Metallic Systems Book in PDF, Epub and Kindle

The common belief is that light is completely reflected by metals. In reality they also exhibit an amazing property that is not so widely known: under some conditions light flows along a metallic surface as if it were glued to it. Physical phenomena related to these light waves, which are called Surface Plasmon Polaritons (SPP), have given rise to the research field of plasmonics. This thesis explores four interesting topics within plasmonics: extraordinary optical transmission, negative refractive index metamaterials, plasmonic devices for controlling SPPs, and field enhancement phenomena near metal nanoparticles.

Collective Plasmon Modes in Gain Media

Collective Plasmon Modes in Gain Media
Author: V.A.G. Rivera,O.B. Silva,Y. Ledemi,Y. Messaddeq,E. Marega Jr.
Publsiher: Springer
Total Pages: 147
Release: 2014-09-03
Genre: Science
ISBN: 9783319095257

Download Collective Plasmon Modes in Gain Media Book in PDF, Epub and Kindle

This book represents the first detailed description, including both theoretical aspects and experimental methods, of the interaction of rare-earth ions with surface plasmon polariton from the point of view of collective plasmon-photon interactions via resonance modes (metal nanoparticles or nanostructure arrays) with quantum emitters (rare-earth ions). These interactions are of particular interest for applications to optical telecommunications, optical displays, and laser solid state technologies. Thus, our main goal is to give a more precise overview of the rapidly emerging field of nanophotonics by means of the study of the quantum properties of light interaction with matter at the nanoscale. In this way, collective plasmon-modes in a gain medium result from the interaction/coupling between a quantum emitter (created by rare-earth ions) with a metallic surface, inducing different effects such as the polarization of the metal electrons (so-called surface plasmon polariton - SPP), a field enhancement sustained by resonance coupling, or transfer of energy due to non-resonant coupling between the metallic nanostructure and the optically active surrounding medium. These effects counteract the absorption losses in the metal to enhance luminescence properties or even to control the polarization and phase of quantum emitters. The engineering of plasmons/SPP in gain media constitutes a new field in nanophotonics science with a tremendous technological potential in integrated optics/photonics at the nanoscale based on the control of quantum effects. This book will be an essential tool for scientists, engineers, and graduate and undergraduate students interested not only in a new frontier of fundamental physics, but also in the realization of nanophotonic devices for optical telecommunication.

Emergent Micro and Nanomaterials for Optical Infrared and Terahertz Applications

Emergent Micro  and Nanomaterials for Optical  Infrared  and Terahertz Applications
Author: Song Sun,Wei Tan,Su-Huai Wei
Publsiher: CRC Press
Total Pages: 444
Release: 2022-10-27
Genre: Technology & Engineering
ISBN: 9781000772593

Download Emergent Micro and Nanomaterials for Optical Infrared and Terahertz Applications Book in PDF, Epub and Kindle

Driven by continuing pursuits in device miniaturization and performance improvement, emergent micro- and nanomaterials hold the keys to enabling next-generation technologies in optical, infrared, and terahertz applications, owing to their unique properties and strong responses in these frequency bands. Development of these fascinating materials has triggered a number of opportunities in the applied sciences, and some have even made their impact in the market. Emergent Micro- and Nanomaterials for Optical, Infrared, and Terahertz Applications reviews state-of-the-art developments in various emergent materials and their implementation in applications such as sensors, waveplates, communications, and light sources, among others. The book discusses the similarities, advantages, and limitations and offers a comparative of each material. This volume: Covers all emergent materials (natural and artificial) that are promising for optical, infrared, and terahertz applications Comparatively analyzes these materials, elucidating their unique advantages, limitations, and application scopes Provides an up-to-date record on achievements and progress in cutting-edge optical, infrared, and terahertz applications Offers a comprehensive overview to connect multidisciplinary fields, such as materials, physics, and optics, to serve as a basis for future progress This book is a valuable reference for engineers, researchers, and students in the areas of materials and optics, as well as physics, and will benefit both junior- and senior-level researchers.

Surface Plasmon Nanophotonics

Surface Plasmon Nanophotonics
Author: Mark L. Brongersma,Pieter G. Kik
Publsiher: Springer
Total Pages: 270
Release: 2007-09-18
Genre: Science
ISBN: 9781402043338

Download Surface Plasmon Nanophotonics Book in PDF, Epub and Kindle

This book discusses a new class of photonic devices, known as surface plasmon nanophotonic structures. The book highlights several exciting new discoveries, while providing a clear discussion of the underlying physics, the nanofabrication issues, and the materials considerations involved in designing plasmonic devices with new functionality. Chapters written by the leaders in the field of plasmonics provide a solid background to each topic.

Silver Nanoparticles

Silver Nanoparticles
Author: Khan Maaz
Publsiher: Unknown
Total Pages: 290
Release: 2018-07
Genre: Electronic Book
ISBN: 9781789234787

Download Silver Nanoparticles Book in PDF, Epub and Kindle