Parallel Solution of Integral Equation Based EM Problems in the Frequency Domain

Parallel Solution of Integral Equation Based EM Problems in the Frequency Domain
Author: Y. Zhang,T. K. Sarkar
Publsiher: John Wiley & Sons
Total Pages: 367
Release: 2009-06-29
Genre: Science
ISBN: 9780470495087

Download Parallel Solution of Integral Equation Based EM Problems in the Frequency Domain Book in PDF, Epub and Kindle

A step-by-step guide to parallelizing cem codes The future of computational electromagnetics is changing drastically as the new generation of computer chips evolves from single-core to multi-core. The burden now falls on software programmers to revamp existing codes and add new functionality to enable computational codes to run efficiently on this new generation of multi-core CPUs. In this book, you'll learn everything you need to know to deal with multi-core advances in chip design by employing highly efficient parallel electromagnetic code. Focusing only on the Method of Moments (MoM), the book covers: In-Core and Out-of-Core LU Factorization for Solving a Matrix Equation A Parallel MoM Code Using RWG Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers A Parallel MoM Code Using Higher-Order Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers Turning the Performance of a Parallel Integral Equation Solver Refinement of the Solution Using the Conjugate Gradient Method A Parallel MoM Code Using Higher-Order Basis Functions and Plapack-Based In-Core and Out-of-Core Solvers Applications of the Parallel Frequency Domain Integral Equation Solver Appendices are provided with detailed information on the various computer platforms used for computation; a demo shows you how to compile ScaLAPACK and PLAPACK on the Windows® operating system; and a demo parallel source code is available to solve the 2D electromagnetic scattering problems. Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain is indispensable reading for computational code designers, computational electromagnetics researchers, graduate students, and anyone working with CEM software.

Modern Characterization of Electromagnetic Systems and its Associated Metrology

Modern Characterization of Electromagnetic Systems and its Associated Metrology
Author: Tapan K. Sarkar,Magdalena Salazar-Palma,Ming Da Zhu,Heng Chen
Publsiher: John Wiley & Sons
Total Pages: 724
Release: 2021-08-24
Genre: Science
ISBN: 9781119076469

Download Modern Characterization of Electromagnetic Systems and its Associated Metrology Book in PDF, Epub and Kindle

New method for the characterization of electromagnetic wave dynamics Modern Characterization of Electromagnetic Systems introduces a new method of characterizing electromagnetic wave dynamics and measurements based on modern computational and digital signal processing techniques. The techniques are described in terms of both principle and practice, so readers understand what they can achieve by utilizing them. Additionally, modern signal processing algorithms are introduced in order to enhance the resolution and extract information from electromagnetic systems, including where it is not currently possible. For example, the author addresses the generation of non-minimum phase or transient response when given amplitude-only data. Presents modern computational concepts in electromagnetic system characterization Describes a solution to the generation of non-minimum phase from amplitude-only data Covers model-based parameter estimation and planar near-field to far-field transformation as well as spherical near-field to far-field transformation Modern Characterization of Electromagnetic Systems is ideal for graduate students, researchers, and professionals working in the area of antenna measurement and design. It introduces and explains a new process related to their work efforts and studies.

Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms

Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms
Author: Caner Ozdemir
Publsiher: John Wiley & Sons
Total Pages: 674
Release: 2021-05-04
Genre: Technology & Engineering
ISBN: 9781119521334

Download Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms Book in PDF, Epub and Kindle

Build your knowledge of SAR/ISAR imaging with this comprehensive and insightful resource The newly revised Second Edition of Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms covers in greater detail the fundamental and advanced topics necessary for a complete understanding of inverse synthetic aperture radar (ISAR) imaging and its concepts. Distinguished author and academician, Caner Ă–zdemir, describes the practical aspects of ISAR imaging and presents illustrative examples of the radar signal processing algorithms used for ISAR imaging. The topics in each chapter are supplemented with MATLAB codes to assist readers in better understanding each of the principles discussed within the book. This new edition incudes discussions of the most up-to-date topics to arise in the field of ISAR imaging and ISAR hardware design. The book provides a comprehensive analysis of advanced techniques like Fourier-based radar imaging algorithms, and motion compensation techniques along with radar fundamentals for readers new to the subject. The author covers a wide variety of topics, including: Radar fundamentals, including concepts like radar cross section, maximum detectable range, frequency modulated continuous wave, and doppler frequency and pulsed radar The theoretical and practical aspects of signal processing algorithms used in ISAR imaging The numeric implementation of all necessary algorithms in MATLAB ISAR hardware, emerging topics on SAR/ISAR focusing algorithms such as bistatic ISAR imaging, polarimetric ISAR imaging, and near-field ISAR imaging, Applications of SAR/ISAR imaging techniques to other radar imaging problems such as thru-the-wall radar imaging and ground-penetrating radar imaging Perfect for graduate students in the fields of electrical and electronics engineering, electromagnetism, imaging radar, and physics, Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms also belongs on the bookshelves of practicing researchers in the related areas looking for a useful resource to assist them in their day-to-day professional work.

Balanced Microwave Filters

Balanced Microwave Filters
Author: Ferran Martin,Lei Zhu,Jiasheng Hong,Francisco Medina
Publsiher: John Wiley & Sons
Total Pages: 688
Release: 2018-02-26
Genre: Technology & Engineering
ISBN: 9781119237624

Download Balanced Microwave Filters Book in PDF, Epub and Kindle

This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 examines wideband and ultra-wideband (UWB) balanced bandpass filters with intrinsic common-mode suppression. Narrowband and dual-band balanced bandpass filters with intrinsic common-mode suppression are discussed in Part 4. Finally, Part 5 covers other balanced circuits, such as balanced power dividers and combiners, and differential-mode equalizers with common-mode filtering. In addition, the book: Explores a research topic of increasing interest due to the growing demand of balanced transmission lines and circuits in modern communication systems Includes contributions from prominent worldwide experts in the field Provides readers with the necessary knowledge to analyze and synthesize balanced filters and circuits Balanced Microwave Filters is an important text for R&D engineers, professionals, and specialists working on the topic of microwave filters. Post graduate students and Masters students in the field of microwave engineering and wireless communications, especially those involved in courses related to microwave filters, and balanced filters and circuits will also find it to be a vital resource.

Design Technology of System Level EMC Engineering

Design Technology of System Level EMC Engineering
Author: Xiaobin Tang,Bin Gao,Yu Zhang
Publsiher: Walter de Gruyter GmbH & Co KG
Total Pages: 425
Release: 2020-08-24
Genre: Technology & Engineering
ISBN: 9783110561715

Download Design Technology of System Level EMC Engineering Book in PDF, Epub and Kindle

This book introduces the state-of-the-art research progress of system-level EMC, including theories, design technologies, principles and applications in practice. The engineering design, simulation, prediction, analysis, test, stage control as well as effectiveness evaluation are discussed in detail with extensive project experiences, making the book an essential reference for researchers and industrial engineers.

Time and Frequency Domain Solutions of EM Problems

Time and Frequency Domain Solutions of EM Problems
Author: B. H. Jung,T. K. Sarkar,Y. Zhang,Z. Ji,M. Yuan,M. Salazar-Palma,S. M. Rao,S. W. Ting,Z. Mei,A. De
Publsiher: Wiley-IEEE Press
Total Pages: 512
Release: 2010-11-09
Genre: Science
ISBN: 0470487674

Download Time and Frequency Domain Solutions of EM Problems Book in PDF, Epub and Kindle

Numerical solutions of electromagnetic field problems is an area of paramount interest in academia, industry and government. This book provides a compendium of solution techniques dealing with integral equations arising in electromagnetic field problems in time and frequency domains. Written by leading researchers in the field, it documents the authors' unique space/time separation approach using Laguerre polynomials. Numerous examples that illustrate the various methodologies and user-friendly computer codes make this volume highly accessible for engineers, researchers, and scientists.

Numerical Analysis for Electromagnetic Integral Equations

Numerical Analysis for Electromagnetic Integral Equations
Author: Karl F. Warnick
Publsiher: Artech House
Total Pages: 234
Release: 2008
Genre: Mathematics
ISBN: 9781596933347

Download Numerical Analysis for Electromagnetic Integral Equations Book in PDF, Epub and Kindle

Introduction -- Surface integral equation formulations and the method of moments -- Error analysis of the EFIE / with W.C. Chew -- Error analysis of the MFIE and CFIE / with C.P. Davis -- Geometrical singularities and the flat strip -- Resonant structures -- Error analysis for 3D problems -- Higher-order basis functions / with A.F. Peterson -- Operator spectra and iterative solution methods.

Advances in Time Domain Computational Electromagnetic Methods

Advances in Time Domain Computational Electromagnetic Methods
Author: Qiang Ren,Su Yan,Atef Z. Elsherbeni
Publsiher: John Wiley & Sons
Total Pages: 724
Release: 2022-11-15
Genre: Science
ISBN: 9781119808398

Download Advances in Time Domain Computational Electromagnetic Methods Book in PDF, Epub and Kindle

Advances in Time-Domain Computational Electromagnetic Methods Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discusses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/ quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.