Plant Growth Promoting Microbes for Sustainable Biotic and Abiotic Stress Management

Plant Growth Promoting Microbes for Sustainable Biotic and Abiotic Stress Management
Author: Heba I. Mohamed,Hossam El-Din Saad El-Beltagi,Kamel A. Abd-Elsalam
Publsiher: Springer Nature
Total Pages: 672
Release: 2021-05-02
Genre: Science
ISBN: 9783030665876

Download Plant Growth Promoting Microbes for Sustainable Biotic and Abiotic Stress Management Book in PDF, Epub and Kindle

Abiotic and biotic stress factors, including drought, salinity, waterlog, temperature extremes, mineral nutrients, heavy metals, plant diseases, nematodes, viruses, and diseases, adversely affect growth as well as yield of crop plants worldwide. Plant growth-promoting microorganisms (PGPM) are receiving increasing attention from agronomists and environmentalists as candidates to develop an effective, eco-friendly, and sustainable alternative to conventional agricultural (e.g., chemical fertilizers and pesticide) and remediation (e.g., chelators-enhanced phytoremediation) methods employed to deal with climate change-induced stresses. Recent studies have shown that plant growth-promoting bacteria (PGPB), rhizobia, arbuscular mycorrhizal fungi (AMF), cyanobacteria have great potentials in the management of various agricultural and environmental problems. This book provides current research of biofertilizers and the role of microorganisms in plant health, with specific emphasis on the mitigating strategies to combat plant stresses.

Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Plant Growth Promoting Rhizobacteria for Sustainable Stress Management
Author: R. Z. Sayyed,Naveen Kumar Arora,M. S. Reddy
Publsiher: Springer Nature
Total Pages: 362
Release: 2019-08-28
Genre: Science
ISBN: 9789811365362

Download Plant Growth Promoting Rhizobacteria for Sustainable Stress Management Book in PDF, Epub and Kindle

Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR can help meet the expected demand for global agricultural productivity to feed the world’s booming population, which is predicted to reach roughly 9 billion by 2050. However, to do so, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.

Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Plant Growth Promoting Rhizobacteria for Sustainable Stress Management
Author: Riyazali Zafarali Sayyed,Naveen Kumar Arora,M. S. Reddy
Publsiher: Unknown
Total Pages: 135
Release: 2019
Genre: Electronic books
ISBN: 9811365377

Download Plant Growth Promoting Rhizobacteria for Sustainable Stress Management Book in PDF, Epub and Kindle

Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR can help meet the expected demand for global agricultural productivity to feed the world?s booming population, which is predicted to reach roughly 9 billion by 2050. However, to do so, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.

Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Plant Growth Promoting Rhizobacteria for Sustainable Stress Management
Author: R. Z. Sayyed
Publsiher: Springer Nature
Total Pages: 419
Release: 2019-10-11
Genre: Science
ISBN: 9789811369865

Download Plant Growth Promoting Rhizobacteria for Sustainable Stress Management Book in PDF, Epub and Kindle

Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR as bioinoculants can help meet the expected demand for global agricultural productivity to feed the world’s booming population, which is predicted to reach roughly 9 billion by 2050. However, to provide effective bioinoculants, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.

Bacteria in Agrobiology Stress Management

Bacteria in Agrobiology  Stress Management
Author: Dinesh K. Maheshwari
Publsiher: Springer Science & Business Media
Total Pages: 336
Release: 2012-01-05
Genre: Science
ISBN: 9783642234651

Download Bacteria in Agrobiology Stress Management Book in PDF, Epub and Kindle

The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. "Bacteria in Agrobiology: Stress Management" covers the major aspects on PGPR in amelioration of both abiotic and biotic stresses. PGPR mediated in priming of plant defense reactions, nutrient availability and management in saline and cold environment, hormonal signaling, ACC deaminase and its role in ethylene regulation under harsh conditions are suitably described.

Plant Growth Promoting Rhizobacteria for Agricultural Sustainability

Plant Growth Promoting Rhizobacteria for Agricultural Sustainability
Author: Ashok Kumar,Vijay Singh Meena
Publsiher: Springer
Total Pages: 314
Release: 2019-06-28
Genre: Technology & Engineering
ISBN: 9789811375538

Download Plant Growth Promoting Rhizobacteria for Agricultural Sustainability Book in PDF, Epub and Kindle

To meet the food security needs of the 21st century, this book focuses on ecofriendly and sustainable production technologies based on plant growth promoting rhizobacteria (PGPR). It is estimated that the global population could increase to 9 billion by 2050. Further, the amount of land devoted to farming has decreased. Soil is a living entity, and is not only a valuable natural resource for agricultural and food security, but also for the preservation of all life processes. Agricultural productivity rests on the foundation of microbial diversity in the soil, and in recent years, PGPR have emerged as an important and promising tool for sustainable agriculture. The injudicious use of agrochemicals by farmers has created a range of negative impacts, not only threatening the environment, but also destroying useful microorganisms in the soil. The efficient use of PGPR reduces the need for these chemicals while simultaneously lowering production costs. In turn, increased yields could provide a more favourable environment and encourage sustainability. This book assesses the impacts of PGPR on crops, environmental and socio-economic sustainability, and demonstrates these ecofriendly technologies’ three critical advantages, namely (a) enhanced crop productivity, (b) reduced application of agrochemicals, and (c) increased incomes for farmers. Besides offering an economically attractive and ecologically sound means of augmenting the nutrient supply and combatting soil-borne pathogens, PGPR play an important part in boosting soil fertility, bioremediation and stress management for the development of ecofriendly and sustainable agriculture.

Beneficial Microbes for Sustainable Agriculture under Stress Conditions

Beneficial Microbes for Sustainable Agriculture under Stress Conditions
Author: Tongmin Sa
Publsiher: Elsevier
Total Pages: 542
Release: 2024-03-19
Genre: Technology & Engineering
ISBN: 9780443131943

Download Beneficial Microbes for Sustainable Agriculture under Stress Conditions Book in PDF, Epub and Kindle

Beneficial Microbes for Sustainable Agriculture under Abiotic Stress: Funtional Traits and Regulation highlights the potential for microbe-mediated stress phytolerance to be improved by presenting multiple scenarios of application and results. In most research and studies, abiotic stress is applied singularly to specific plants inoculated with a bioinoculum or a bacterial consortium to isolate specific plant-microbe responses. However, in reality, plants are continually exposed to a multitude of different stresses simultaneously occurring. This book presents bacteria functional traits and bacteria-mediated plant responses under both specific or combined stress conditions. Collectively, it provides insights into bacterial functional traits and bacteria-mediated plant responses in a wide range of conditions, providing foundational understanding of their potential benefits, and inspiring further research. The book centers on specific bacterial strains and groups which have been shown to effectively promote stress tolerance, and which could be utilized to boost agricultural production under stress conditions. Their potential utilization in stress affected lands not just improves crop production but could also be in line with sustainable agriculture. With the advancement of tools such as Omics related technologies, emerging information on bacterial functional traits and regulations on bacteria mediated phytotolerance will also allow us to develop relevant biotechnologies harnessing potentials of plant-bacteria interactions under stress conditions. The information in this volume will be of interest to those working toward these next steps. Includes microbial functional traits and responses common to all stresses, unique to specific stress and shared by multiple stresses Focuses on microbial strains and groups proven to be most effective in promoting stress tolerance Explores opportunities toward improvement of sustainable agriculture and resulting food security

Plant Microbiome Stress Response

Plant Microbiome  Stress Response
Author: Dilfuza Egamberdieva,Parvaiz Ahmad
Publsiher: Springer
Total Pages: 384
Release: 2018-02-06
Genre: Technology & Engineering
ISBN: 9789811055140

Download Plant Microbiome Stress Response Book in PDF, Epub and Kindle

This book presents state-of-the-art research on the many facets of the plant microbiome, including diversity, ecology, physiology and genomics, as well as molecular mechanisms of plant-microbe interactions. Topics considered include the importance of microbial secondary metabolites in stimulating plant growth, induced systemic resistance, tolerance to abiotic stress, and biological control of plant pathogens. The respective contributions show how microbes help plants to cope with abiotic stresses, and represent significant progress toward understanding the complex regulatory networks critical to host-microbe interaction and plant adaptation in extreme environments. New insights into the mechanisms of microbial actions in inducing plant stress tolerance open new doors for improving the efficacy of microbial strategies, and could produce new ways of economically increasing crop yields without harming the environment. As such, this book offers an essential resource for students and researchers with an interest in plant-microbe interaction, as well as several possibilities for employing the plant microbiome in the enhancement of crop productivity under future climate change scenarios.