Plasma Turbulence in the Solar System

Plasma Turbulence in the Solar System
Author: Yasuhito Narita
Publsiher: Springer Science & Business Media
Total Pages: 108
Release: 2012-01-19
Genre: Science
ISBN: 9783642256660

Download Plasma Turbulence in the Solar System Book in PDF, Epub and Kindle

Dynamics of astrophysical systems is often described by plasma physics, yet understanding the nature of plasma turbulence remains as a challenge in physics in both theories and experiments. This book is an up-to-date summary and review of recent results in research on waves and turbulence in near-Earth space plasma turbulence, obtained by Cluster, the multi-spacecraft mission. Spatial and temporal structures of solar wind turbulence as well as its interaction with the bow shock ahead of the Earth are presented using Cluster data. The book presents (1) historical developments, (2) theoretical background of plasma physics, turbulence theories, and the plasma physical picture of the solar system, (3) analysis methods for multi-spacecraft data, (4) results of Cluster data analysis, and (5) impacts on astrophysics and Earth sciences.

Turbulence in the Solar Wind

Turbulence in the Solar Wind
Author: Roberto Bruno,Vincenzo Carbone
Publsiher: Springer
Total Pages: 267
Release: 2016-10-07
Genre: Science
ISBN: 9783319434407

Download Turbulence in the Solar Wind Book in PDF, Epub and Kindle

This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in order to explain the transport of mass, momentum and energy during the expansion. Further, existing models are compared with direct observations in the heliosphere. The problem of self-similar and anomalous fluctuations in the solar wind is then addressed using tools provided by dynamical system theory and discussed on the basis of available models and observations. The book highlights observations of Yaglom’s law in solar wind turbulence, which is one of the most important findings in fully developed turbulence and directly related to the long-lasting and still unsolved problem of solar wind plasma heating. Lastly, it includes a short chapter dedicated to the kinetic range of fluctuations, which has recently been receiving more attention from the space plasma community, since this is inherently related to turbulent energy dissipation and consequent plasma heating. It particularly focuses on the nature and role of the fluctuations populating this frequency range, and discusses several model predictions and recent observational findings in this context.

Turbulence in Space Plasmas

Turbulence in Space Plasmas
Author: Loukas Vlahos,Peter Cargill
Publsiher: Springer
Total Pages: 325
Release: 2009-06-12
Genre: Science
ISBN: 9783642002106

Download Turbulence in Space Plasmas Book in PDF, Epub and Kindle

Over the years, many leading European graduate schools in the field of astrophysical and space plasmas have operated within the framework of the research network, "Theory, Observations, and Simulations in Turbulence in Space Plasmas." This text is a set of lectures and tutorial reviews culled from the relevant work of all those schools. It emphasizes applications on solar coronae, solar flares, and the solar wind. In bridging the gap between standard textbook material and state-of-the-art research, this text offers a broad flavor to postgraduate and postdoctoral students just coming to the field. And because of its unique mix, it will also be useful to lecturers looking for advanced teaching material for their seminars and courses.

Physics of the Inner Heliosphere II

Physics of the Inner Heliosphere II
Author: Rainer Schwenn,Eckart Marsch
Publsiher: Springer Science & Business Media
Total Pages: 360
Release: 2013-06-29
Genre: Science
ISBN: 9783642753640

Download Physics of the Inner Heliosphere II Book in PDF, Epub and Kindle

Physics of the Inner Heliosphere gives for the first time a comprehensive and complete summary of our knowledge of the inner solar system. Using data collected over more than 11 years by the HELIOS twin solar probes, one of the most successful ventures in unmanned space exploration, the authors have compiled six extensive reviews of the physical processes of the inner heliosphere and their relation to the solar atmosphere. Researchers and advanced students in space and plasma physics, astronomy, and solar physics will be surprised to see just how closely the heliosphere is tied to, and how sensitively it depends on, the sun. Volume 2 deals with particles, waves, and turbulence, with chapters on: - magnetic clouds - interplanetary clouds - the solar wind plasma and MHD turbulence - waves and instabilities - energetic particles in the inner solar system

Space Physics

Space Physics
Author: May-Britt Kallenrode
Publsiher: Springer Science & Business Media
Total Pages: 487
Release: 2013-03-09
Genre: Science
ISBN: 9783662099599

Download Space Physics Book in PDF, Epub and Kindle

Observations and physical concepts are interwoven to give basic explanations of phenomena and also show the limitations in these explanations and identify some fundamental questions. Compared to conventional plasma physics textbooks this book focuses on the concepts relevant in the large-scale space plasmas. It combines basic concepts with current research and new observations in interplanetary space and in the magnetospheres. Graduate students and young researchers starting to work in this special field of science, will find the numerous references to review articles as well as important original papers helpful to orientate themselves in the literature. Emphasis is on energetic particles and their interaction with the plasma as examples for non-thermal phenomena, shocks and their role in particle acceleration as examples for non-linear phenomena. This second edition has been updated and extended. Improvements include: the use of SI units; addition of recent results from SOHO and Ulysses; improved treatment of the magnetosphere as a dynamic phenomenon; text restructured to provide a closer coupling between basic physical concepts and observed complex phenomena.

Energy Transfer and Dissipation in Plasma Turbulence

Energy Transfer and Dissipation in Plasma Turbulence
Author: Yan Yang
Publsiher: Unknown
Total Pages: 134
Release: 2019
Genre: Energy transfer
ISBN: 981138150X

Download Energy Transfer and Dissipation in Plasma Turbulence Book in PDF, Epub and Kindle

This book revisits the long-standing puzzle of cross-scale energy transfer and dissipation in plasma turbulence and introduces new perspectives based on both magnetohydrodynamic (MHD) and Vlasov models. The classical energy cascade scenario is key in explaining the heating of corona and solar wind. By employing a high-resolution hybrid (compact finite difference & WENO) scheme, the book studies the features of compressible MHD cascade in detail, for example, in order to approximate a real plasma cascade as "Kolmogorov-like" and to understand features that go beyond the usual simplified theories based on incompressible models. When approaching kinetic scales where plasma effects must be considered, it uses an elementary analysis of the Vlasov-Maxwell equations to help identify the channels through which energy transfer must be dissipated. In addition, it shows that the pressure-strain interaction is of great significance in producing internal energy. This analysis, in contrast to many other recent studies, does not make assumptions about wave-modes, instability or other specific mechanisms responsible for the dynamics - the results are direct consequences of the Vlasov-Maxwell system of equations. This is an important step toward understanding dissipation in turbulent collisionless plasma in space and astrophysics.

Solar System Plasma Processes

Solar System Plasma Processes
Author: Louis J. Lanzerotti,Charles F. Kennel,Eugene Newman Parker
Publsiher: North-Holland
Total Pages: 438
Release: 1979
Genre: Science
ISBN: STANFORD:36105000885397

Download Solar System Plasma Processes Book in PDF, Epub and Kindle

Energy Transfer and Dissipation in Plasma Turbulence

Energy Transfer and Dissipation in Plasma Turbulence
Author: Yan Yang
Publsiher: Springer
Total Pages: 134
Release: 2019-05-02
Genre: Science
ISBN: 9789811381492

Download Energy Transfer and Dissipation in Plasma Turbulence Book in PDF, Epub and Kindle

This book revisits the long-standing puzzle of cross-scale energy transfer and dissipation in plasma turbulence and introduces new perspectives based on both magnetohydrodynamic (MHD) and Vlasov models. The classical energy cascade scenario is key in explaining the heating of corona and solar wind. By employing a high-resolution hybrid (compact finite difference & WENO) scheme, the book studies the features of compressible MHD cascade in detail, for example, in order to approximate a real plasma cascade as “Kolmogorov-like” and to understand features that go beyond the usual simplified theories based on incompressible models. When approaching kinetic scales where plasma effects must be considered, it uses an elementary analysis of the Vlasov–Maxwell equations to help identify the channels through which energy transfer must be dissipated. In addition, it shows that the pressure–strain interaction is of great significance in producing internal energy. This analysis, in contrast to many other recent studies, does not make assumptions about wave-modes, instability or other specific mechanisms responsible for the dynamics – the results are direct consequences of the Vlasov–Maxwell system of equations. This is an important step toward understanding dissipation in turbulent collisionless plasma in space and astrophysics.