Principle Design and Optimization of Air Balancing Methods for the Multi zone Ventilation Systems in Low Carbon Green Buildings

Principle  Design and Optimization of Air Balancing Methods for the Multi zone Ventilation Systems in Low Carbon Green Buildings
Author: Xin Zhang,Can Cui,Wen-Jian Cai,Hui Cai,Gang Jing
Publsiher: Springer Nature
Total Pages: 167
Release: 2022-10-17
Genre: Architecture
ISBN: 9789811970917

Download Principle Design and Optimization of Air Balancing Methods for the Multi zone Ventilation Systems in Low Carbon Green Buildings Book in PDF, Epub and Kindle

This book presents a systematic study on the air balancing technologies in heating, ventilation and air conditioning (HVAC) systems. Several modern air balancing methods, including advanced control-based air balancing, data-driven-based air balancing, and energy-saving-oriented air balancing, are introduced in this book to balance the air duct system. Furthermore, this book provides clear instructions for both HVAC designers and engineers, as well as researchers, on how to design and balance duct systems for improved performance and energy efficiency.

Proceedings of the 23rd Pacific Basin Nuclear Conference Volume 3

Proceedings of the 23rd Pacific Basin Nuclear Conference  Volume 3
Author: Chengmin Liu
Publsiher: Springer Nature
Total Pages: 1260
Release: 2023-05-09
Genre: Science
ISBN: 9789811988998

Download Proceedings of the 23rd Pacific Basin Nuclear Conference Volume 3 Book in PDF, Epub and Kindle

This is the third in a series of three volumes of proceedings of the 23rd Pacific Basin Nuclear Conference (PBNC 2022) which was held by Chinese Nuclear Society. As one in the most important and influential conference series of nuclear science and technology, the 23rd PBNC was held in Beijing and Chengdu, China in 2022 with the theme “Nuclear Innovation for Zero-carbon Future”. For taking solid steps toward the goals of achieving peak carbon emissions and carbon neutrality, future-oriented nuclear energy should be developed in an innovative way for meeting global energy demands and coordinating the deployment mechanism. It brought together outstanding nuclear scientists and technical experts, senior industry executives, senior government officials and international energy organization leaders from all across the world. The proceedings highlight the latest scientific, technological and industrial advances in Nuclear Safety and Security, Operations and Maintenance, New Builds, Waste Management, Spent Fuel, Decommissioning, Supply Capability and Quality Management, Fuel Cycles, Digital Reactor and New Technology, Innovative Reactors and New Applications, Irradiation Effects, Public Acceptance and Education, Economics, Medical and Biological Applications, and also the student program that intends to raise students’ awareness in fully engaging in this career and keep them updated on the current situation and future trends. These proceedings are not only a good summary of the new developments nuclear science and technology, but also a useful guideline for the researchers, engineers and graduate students.

Ventilation Systems

Ventilation Systems
Author: Hazim B. Awbi
Publsiher: Psychology Press
Total Pages: 459
Release: 2008
Genre: Technology & Engineering
ISBN: 9780419217008

Download Ventilation Systems Book in PDF, Epub and Kindle

This comprehensive account of the methods used for ventilating buildings and the type of systems currently in use for achieving the desired indoor environment will be of particular interest to graduate students, professionals and researchers.

On the performance of stratified ventilation

On the performance of stratified ventilation
Author: Ulf Larsson
Publsiher: Linköping University Electronic Press
Total Pages: 87
Release: 2018-08-20
Genre: Electronic Book
ISBN: 9789176852514

Download On the performance of stratified ventilation Book in PDF, Epub and Kindle

People nowadays spend most of their time indoors, for example in their homes, cars, in trains, at work, etc. In Sweden, the energy demand in the built environment is a growing issue. The building sector accounts for 40% of total energy use and 15% of total CO2 emissions, and around one-third of the energy use in the world is related to providing a healthy and good comfort indoors. To achieve acceptable indoor climates new designs for the ventilation systems have been proposed in recent decades, among them stratified ventilation systems. Stratified ventilation is a concept that often allows good performance for both indoor air quality and thermal comfort. Stratified ventilation systems are effective in reducing cross contamination, since there is virtually no mixing in the space; the temperature and the pollutant concentration increase linearly from the heat source with the height of the occupied zone. There are many different ventilation supply devices using the stratified principle, such as displacement supply device (DSD), impinging jet supply device (IJSD) and wall confluent jet supply device (WCJSD). The main aim of this thesis is to analyze and compare different supply devices based on stratified ventilation, with different setups, related to thermal indoor climate, energy efficiency and ventilation efficiency. The ultimate goal is to contribute to an increased understanding of how ventilation systems with stratified supply devices perform. Two scientific methods have mainly been used in this thesis, i.e., experimental and numerical investigations. For numerical experiments the CFD (Computational Fluid Dynamics) code ANSYS and FIDAP have been used. Experimental studies have been performed with thermocouples, Hot-Wire Anemometry (HWA) and Hot-Sphere Anemometry, thermal comfort measurement equipment and tracer gas measurement equipment. This thesis mainly focuses on three research questions: Interaction between a supply device based on stratified ventilation and downdraft from windows; Flow behavior, energy performance and air change effectiveness for different supply devices based on stratified ventilation; and Thermal comfort for different supply devices based on stratified ventilation. Research question one showed that the arrangement of displacement supply device and window in cold climate has significant effect on the flow pattern below the window. Different supply airflow rates have an effect on both the velocity and the temperature of the downdraft. In this case the velocity decreased by approximately 9.5% and the temperature in the downdraft decreased 0.5°C when the flowrate from the supply device increased from 10 to 15 l/s. Research question two showed that airflow patterns between different air supply systems were essentially related to characteristics of air supply devices, such as the type, configuration and position, as well as air supply velocities and momentum. For WCJSD, IJSD and DSD, positions of heat sources (such as occupant, computers, lights and external heat sources) played an important role in formation of the room airflow pattern. One interesting observation is that the temperature in the occupied zone is lower and a more stratified temperature field implies a more efficient heat removal by a stratified air supply device. The results revealed that the lowest temperature in the occupied zone was achieved for DSD, but with IJSD and WCJSD slightly warmer, while the system with a mixing supply device (MSD) showed a much higher temperature. The results confirm that air change effectiveness (ACE) for the DSD, WCJSD and IJSD is close to each other. However, MSD shows lower ACE in all the present papers than IJSD, WCJSD and DSD. Research question three showed that ventilation systems with stratified supply devices in almost all of the studied cases showed an acceptable level for predicted percentage dissatisfied (PPD), predicted mean vote (PMV) and percentage dissatisfied due to draft (DR). If comparing ventilation systems, using IJSD, WCJSD or DSD with MSD always showed thermal comfort better or at the same level. Människor spenderar en stor del av sin tid inomhus, exempelvis i sina bostäder och bilar, på tåg och på arbetet. Sveriges energibehov i den byggda miljön har en växande trend. Byggnadssektorn står för 40 % av det totala energibehovet och för 15 % av CO2 utsläppet och för cirka en tredjedel av energianvändningen i världen för att tillhandahålla en hälsosam och bra inomhusmiljö. För att skapa en bra inomhusmiljö har nya sätt att ventilera inomhusmiljön utvecklats under de senaste årtiondena. De olika principer som används för att ventilera en byggnad kan indelas i: kolvströmning, omblandande strömning och deplacerande strömning. De genererar rumsförhållanden som ger olika fördelning av hastighet, temperatur och föroreningar i det ventilerade utrymmet. Stratifierad ventilation är ett koncept som ofta ger ett bra utfall av både inomhusluftkvalitet och termisk komfort. Stratifierade system är effektiva för att minska korskontaminering, eftersom det nästan inte finns någon omblandning i rummet, temperaturen och föroreningskoncentration ökar linjärt från värmekällan med höjden i vistelsezonen. Det finns många olika ventilationsdon som använder den stratifierade principen, såsom deplacerande ventilationsdon (DSD), impinging jet-ventilationsdon (IJSD) och väggbaserad confluent jet-ventilationsdon (WCJSD). Huvudsyftet med denna avhandling är att analysera och jämföra olika tilluftsdon baserat på stratifierad princip i olika rumskonfigurationer med avseende på termiskt inomhusklimat, energieffektivitet och ventilationseffektivitet. Det yttersta målet är att bidra till ökad förståelse för hur ventilationssystem med olika stratifierade tilluftsdon fungerar. Två vetenskapliga metoder har huvudsakligen använts i denna avhandling: experimentella och numeriska analyser. För numeriska analyser har CFD (Computational Fluid Dynamics) använts. De simuleringsprogram som utnyttjats för detta ändamål är ANSYS och FIDAP. Experimenten har utförts med hjälp av termoelement, varmtråds- och varmsfärsteknik, mätutrustning för termisk komfort och mätutrustning för spårgas. Denna avhandling fokuserar framför allt på tre forskningsfrågor: interaktion mellan ett tilluftsflöde från ett deplacerande don och kallraset från ett fönster; strömningsbilden, energiprestandan och luftbyteseffektiviteten för olika tilluftsdon baserat på stratifierad ventilation; och termisk komfort för olika tilluftsdon baserade på stratifierad ventilation. Forskningsfråga ett visade att kombinationen av tilluftsflöde genom ett deplacerande don och fönster i kallt klimat har tydlig effekt på strömningsbilden för kallraset under fönstret. Olika tilluftsflöden har en effekt på både hastigheten och temperaturen i kallraset. I detta fall minskade hastigheten med ca 9,5% och temperaturen i kallraset minskade med 0,5°C när flödeshastigheten från tilluftsdonet ökade från 10 till 15 l/s. Forskningsfråga två visade att luftflödesmönstren mellan olika luftförsörjningssystem väsentligen var relaterade till egenskaper hos tilluftsdonen, såsom typ, konfiguration och position samt lufttillförselhastigheter och impulskraft. För WCJSD, IJSD och DSD spelade värmekällans placering, d.v.s. människor, datorer, belysning och externa värmekällor, en viktig roll vid utformningen av rummets luftflödesmönster. En intressant observation är att temperaturen i vistelsezonen är lägre och rummet har ett mer stratifierat temperaturfält, vilket innebär en effektivare ventilering av den zonen. Resultaten visade att den lägsta temperaturen i vistelsezonen uppnåddes för DSD medan IJSD och WCJSD visade en något högre temperatur, systemet med ett omblandande don (MSD) visade en påtagligt högre temperatur. Resultaten bekräftar också att luftförändringseffektiviteten (ACE) för DSD, WCJSD och IJSD ligger nära varandra. MSD visar dock i alla ingående artiklar lägre ACE än IJSD, WCJSD och DSD. Forskningsfråga tre visade att ventilationssystem med stratifierade tilluftsdon i nästan samtliga studerade fallen haren acceptabel nivå för predicted mean vote (PPD), predicted mean vote (PMV) och percentage dissatisfied due to draft (DR). Om man jämförde ventilationssystem IJSD, WCJSD eller DSD med MSD visade det sig alltid att den termiska komforten var bättre eller på samma nivå som för MSD.

Ventilation of Buildings

Ventilation of Buildings
Author: H.B. Awbi
Publsiher: Routledge
Total Pages: 537
Release: 2004-06-02
Genre: Architecture
ISBN: 9781134489626

Download Ventilation of Buildings Book in PDF, Epub and Kindle

Hazim Awbi's Ventilation of Buildings has become established as the definitive text on the subject. This new, thoroughly revised, edition builds on the basic principles of the original text drawing in the results of considerable new research in the field. A new chapter on natural ventilation is also added and recent developments in ventilation concepts and room air distribution are also considered. The text is intended for the practitioner in the building services industry, the architect, the postgraduate student undertaking courses or research in HVAC, building services engineering, or building environmental engineering, and the undergraduate studying building services as a major subject. Readers are assumed to be familiar with the basic principles of fluid flow and heat transfer and some of the material requires more advanced knowledge of partial differential equations which describe the turbulent flow and heat transfer processes of fluids. The book is both a presentation of the practical issues that are needed for modern ventilation system design and a survey of recent developments in the subject

Ventilation and Airflow in Buildings

Ventilation and Airflow in Buildings
Author: Claude-Alain Roulet
Publsiher: Earthscan
Total Pages: 211
Release: 2012-05-16
Genre: Architecture
ISBN: 9781849773713

Download Ventilation and Airflow in Buildings Book in PDF, Epub and Kindle

Energy efficiency in buildings requires, among other things, that ventilation be appropriately dimensioned: too much ventilation wastes energy, and insufficient ventilation leads to poor indoor air quality and low comfort.Studies have shown that ventilation systems seldom function according to their commissioned design. They have also shown that airflow measurement results are essential in improving a ventilation system. This key handbook explains why ventilation in buildings should be measured and describes how to measure it, giving applied examples for each measurement method.The book will help building physicists and ventilation engineers to properly commission ventilation systems and appropriately diagnose ventilation problems throughout the life of a building. Drawing on over 20 years of experience and the results of recent international research projects, this is the definitive guide to diagnosing airflow patterns within buildings.

Handbook of Energy Systems in Green Buildings

Handbook of Energy Systems in Green Buildings
Author: Ruzhu Wang,Xiaoqiang Zhai
Publsiher: Springer
Total Pages: 0
Release: 2018-06-18
Genre: Technology & Engineering
ISBN: 3662491192

Download Handbook of Energy Systems in Green Buildings Book in PDF, Epub and Kindle

This handbook provides a comprehensive summary on the energy systems used in green buildings, with a particular focus on solar energy - the most common renewable energy source applied in this field. With the growing concern about environmental protections, the concepts of green building have been widely promoted and implemented in nowadays building designs and constructions. Among all, sustainable energy systems, including energy harvesting, conversion, and storage, is one of most important design factors in green buildings. Unlike traditional energy systems which highly rely on fossil fuel, green buildings utilize renewable energy source or high efficient energy systems, or both, to provide environmental friendly, low carbon waste energy. The most updated concepts, designs, technologies developed and implemented in heat pumps, cooling systems, power systems, and energy storage will be discussed here in details. This handbook is subdivided into 7-9 main sections to provide an in-depth discussion from foundational principles to practical techniques. In addition, different cases about green energy systems implemented in global will be discussed. The book will be structured easy-to-read, to make it more accessible to graduate students and professionals in diverse scientific and engineering communities, including applied physics, civil engineering, electrical engineering, mechanical engineering, material engineering, and chemical engineering.

Optimization of Ventilation System Design and Operation in Office Environment

Optimization of Ventilation System Design and Operation in Office Environment
Author: Liang Zhou
Publsiher: Unknown
Total Pages: 0
Release: 2007
Genre: Electronic Book
ISBN: OCLC:1108668979

Download Optimization of Ventilation System Design and Operation in Office Environment Book in PDF, Epub and Kindle

With growing concern about the impact of indoor environment quality on office workers' well-being and productivity, coupled with the concern over the rising energy costs for space heating and cooling in office building sector, ventilation principles that integrate flexible and responsive elements have grown in popularity in office buildings. Such advanced elements as Underfloor air distribution (UFAD), passive swirl diffusers, and demand control on ventilation rate pose challenges to system design and operation. This thesis is concerned with the development and implementation of a practical and robust optimization scheme, with the goal of aiding the office building designers and operators to enhance the thermal comfort and indoor air quality (IAQ without sacrificing energy costs of ventilation. The path taken is a simulation-based optimization approach by using computational fluid dynamics (CFD) techniques in conjunction with genetic algorithm (GA), with the integration of an artificial neural network (ANN) for response surface approximation (RSA) and for speeding up fitness evaluations inside the GA loop. It breaks the problem into three sequential steps. First, the performance of various ventilation systems was predicted and evaluated by CFD simulations for an assumed set of indoor/outdoor environmental conditions. By varying the external temperature, the internal heat load, the geometric configuration in the office, the supply air states, and the placement of air terminals in the CFD model and examining the consequent effects, the influential parameters significantly affecting the objectives of interest can be identified and examined. Though CFD is often quoted as a method of acquiring detail and accuracy, the excessive computational costs retards the direct conflation of it into the optimization underway. It is then a worthy effort establishing a low fidelity model for RSA, which can be then used in the place of CFD to evaluate fitness during optimization search. In the second step, an ANN model was trained and tested for this purpose by using data obtained from pre-conducted CFD simulations. When created properly, such a model significantly decreases the computing time for optimization objectives and constraints calculation without compromising accuracy. Finally, a GA was applied in the third step to search for the near-optimal combinations of the controlled variables, using the pre-trained ANN model for fitness evaluations inside searching loops. The objective function is formulated in a way attempting to integrate and weight indicators such as predicted mean vote (PMV for thermal comfort assessment), ventilation effectiveness ([varepsilon] v for IAQ evaluation), and energy usage by space cooling and a supply fan into one performance index. The CFD simulations in this study are pre-validated using experimental data from baseline cases with both UFAD system and ceiling mounted mixing system (MS). Good agreements between the measured and the predicted air velocity/temperature profiles provide the justification for the current choice of turbulence model and the present specification of boundary conditions. It can be observed that the ANN model obtained and used cuts down the execution time from 17 hours per CFD simulation (thus, per fitness evaluation in GA originally) to a time scale of a few minutes for the whole GA search (invoking approximate 5000 fitness evaluations in total). Within a particular office space with a given indoor pollutant emission rate and internal/external thermal conditions, the final optimization solution contains a set of near optimal ventilation system design/operation parameters, including the ventilation system type, diffuser type, number of diffusers, supply air temperature, amount of supply air, as well as the location of diffusers and return grilles, which can substantially enhance the thermal comfort level and IAQ with saving in the energy costs simultaneously. Such optimization results indicate that the present choices of objective function and optimization approach are able to result in great improvements in the design and operation of ventilation systems in office environments. This thesis also provides a brief discussion regarding the potential advancements of this work, with the hope to provide a practical tool for aiding decision making during building system design and operation process.