Principles of Microelectromechanical Systems

Principles of Microelectromechanical Systems
Author: Ki Bang Lee
Publsiher: John Wiley & Sons
Total Pages: 552
Release: 2011-03-21
Genre: Technology & Engineering
ISBN: 9781118102244

Download Principles of Microelectromechanical Systems Book in PDF, Epub and Kindle

The building blocks of MEMS design through closed-form solutions Microelectromechanical Systems, or MEMS, is the technology of very small systems; it is found in everything from inkjet printers and cars to cell phones, digital cameras, and medical equipment. This book describes the principles of MEMS via a unified approach and closed-form solutions to micromechanical problems, which have been recently developed by the author and go beyond what is available in other texts. The closed-form solutions allow the reader to easily understand the linear and nonlinear behaviors of MEMS and their design applications. Beginning with an overview of MEMS, the opening chapter also presents dimensional analysis that provides basic dimensionless parameters existing in large- and small-scale worlds. The book then explains microfabrication, which presents knowledge on the common fabrication process to design realistic MEMS. From there, coverage includes: Statics/force and moment acting on mechanical structures in static equilibrium Static behaviors of structures consisting of mechanical elements Dynamic responses of the mechanical structures by the solving of linear as well as nonlinear governing equations Fluid flow in MEMS and the evaluation of damping force acting on the moving structures Basic equations of electromagnetics that govern the electrical behavior of MEMS Combining the MEMS building blocks to form actuators and sensors for a specific purpose All chapters from first to last use a unified approach in which equations in previous chapters are used in the derivations of closed-form solutions in later chapters. This helps readers to easily understand the problems to be solved and the derived solutions. In addition, theoretical models for the elements and systems in the later chapters are provided, and solutions for the static and dynamic responses are obtained in closed-forms. This book is designed for senior or graduate students in electrical and mechanical engineering, researchers in MEMS, and engineers from industry. It is ideal for radio frequency/electronics/sensor specialists who, for design purposes, would like to forego numerical nonlinear mechanical simulations. The closed-form solution approach will also appeal to device designers interested in performing large-scale parametric analysis.

Principles of Microelectromechanical Systems

Principles of Microelectromechanical Systems
Author: Anonim
Publsiher: Unknown
Total Pages: 667
Release: 2011
Genre: Microelectromechanical systems
ISBN: OCLC:741258984

Download Principles of Microelectromechanical Systems Book in PDF, Epub and Kindle

Analysis and Design Principles of MEMS Devices

Analysis and Design Principles of MEMS Devices
Author: Minhang Bao
Publsiher: Elsevier
Total Pages: 327
Release: 2005-04-12
Genre: Technology & Engineering
ISBN: 9780080455624

Download Analysis and Design Principles of MEMS Devices Book in PDF, Epub and Kindle

Sensors and actuators are now part of our everyday life and appear in many appliances, such as cars, vending machines and washing machines. MEMS (Micro Electro Mechanical Systems) are micro systems consisting of micro mechanical sensors, actuators and micro electronic circuits. A variety of MEMS devices have been developed and many mass produced, but the information on these is widely dispersed in the literature. This book presents the analysis and design principles of MEMS devices. The information is comprehensive, focusing on microdynamics, such as the mechanics of beam and diaphragm structures, air damping and its effect on the motion of mechanical structures. Using practical examples, the author examines problems associated with analysis and design, and solutions are included at the back of the book. The ideal advanced level textbook for graduates, Analysis and Design Principles of MEMS Devices is a suitable source of reference for researchers and engineers in the field. * Presents the analysis and design principles of MEMS devices more systematically than ever before. * Includes the theories essential for the analysis and design of MEMS includes the dynamics of micro mechanical structures * A problem section is included at the end of each chapter with answers provided at the end of the book.

Mechanics of Microelectromechanical Systems

Mechanics of Microelectromechanical Systems
Author: Nicolae Lobontiu,Ephrahim Garcia
Publsiher: Springer Science & Business Media
Total Pages: 415
Release: 2006-01-16
Genre: Technology & Engineering
ISBN: 9780387230375

Download Mechanics of Microelectromechanical Systems Book in PDF, Epub and Kindle

This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer’s viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate with the reversed functionality (as in sensors) and convert an external stimulus, such as mechanical motion, into (generally) electric energy. The impetus of this proposal stems from the perception that such an approach might contribute to a more solid understanding of the principles governing the mechanics of MEMS, and would hopefully enhance the efficiency of modeling and designing reliable and desirably-optimized microsystems. The work represents an attempt at both extending and deepening the mechanical-based approach to MEMS in the static domain by providing simple, yet reliable tools that are applicable to micromechanism design through current fabrication technologies. Lumped-parameter stiffness and compliance properties of flexible components are derived both analytically (as closed-form solutions) and as simplified (engineering) formulas. Also studied are the principal means of actuation/sensing and their integration into the overall microsystem. Various examples of MEMS are studied in order to better illustrate the presentation of the different modeling principles and algorithms. Through its objective, approach and scope, this book offers a novel and systematic insight into the MEMS domain and complements existing work in the literature addressing part of the material developed herein.

Inertial MEMS

Inertial MEMS
Author: Volker Kempe
Publsiher: Cambridge University Press
Total Pages: 497
Release: 2011-02-17
Genre: Technology & Engineering
ISBN: 9781139494823

Download Inertial MEMS Book in PDF, Epub and Kindle

A practical and systematic overview of the design, fabrication and test of MEMS-based inertial sensors, this comprehensive and rigorous guide shows you how to analyze and transform application requirements into practical designs, and helps you to avoid potential pitfalls and to cut design time. With this book you'll soon be up to speed on the relevant basics, including MEMS technologies, packaging, kinematics and mechanics, and transducers. You'll also get a thorough evaluation of different approaches and architectures for design and an overview of key aspects of testing and calibration. Unique insights into the practical difficulties of making sensors for real-world applications make this up-to-date description of the state of the art in inertial MEMS an ideal resource for professional engineers in industry as well as students looking for a complete introduction to the area.

Understanding MEMS

Understanding MEMS
Author: Luis Castañer
Publsiher: John Wiley & Sons
Total Pages: 330
Release: 2015-12-14
Genre: Technology & Engineering
ISBN: 9781119055426

Download Understanding MEMS Book in PDF, Epub and Kindle

The continued advancement of MEMS (micro-electro-mechanical systems) complexity, performance, commercial exploitation and market size requires an ever-expanding graduate population with state-of-the-art expertise. Understanding MEMS: Principles and Applications provides a comprehensive introduction to this complex and multidisciplinary technology that is accessible to senior undergraduate and graduate students from a range of engineering and physical sciences backgrounds. Fully self-contained, this textbook is designed to help students grasp the key principles and operation of MEMS devices and to inspire advanced study or a career in this field. Moreover, with the increasing application areas, product categories and functionality of MEMS, industry professionals will also benefit from this consolidated overview, source of relevant equations and extensive solutions to problems. Key features: Details the fundamentals of MEMS, enabling readers to understand the basic governing equations and know how they apply at the micron scale. Strong pedagogical emphasis enabling students to understand the fundamentals of MEMS devices. Self-contained study aid featuring problems and solutions. Book companion website hosts Matlab and PSpice codes and viewgraphs.

Nano and Micro Electromechanical Systems

Nano  and Micro Electromechanical Systems
Author: Sergey Edward Lyshevski
Publsiher: CRC Press
Total Pages: 356
Release: 2000-09-28
Genre: Technology & Engineering
ISBN: 0849309166

Download Nano and Micro Electromechanical Systems Book in PDF, Epub and Kindle

Society is approaching and advancing nano- and microtechnology from various angles of science and engineering. The need for further fundamental, applied, and experimental research is matched by the demand for quality references that capture the multidisciplinary and multifaceted nature of the science. Presenting cutting-edge information that is applicable to many fields, Nano- and Micro-Electromechanical Systems: Fundamentals of Nano and Microengineering, Second Edition builds the theoretical foundation for understanding, modeling, controlling, simulating, and designing nano- and microsystems. The book focuses on the fundamentals of nano- and microengineering and nano- and microtechnology. It emphasizes the multidisciplinary principles of NEMS and MEMS and practical applications of the basic theory in engineering practice and technology development. Significantly revised to reflect both fundamental and technological aspects, this second edition introduces the concepts, methods, techniques, and technologies needed to solve a wide variety of problems related to high-performance nano- and microsystems. The book is written in a textbook style and now includes homework problems, examples, and reference lists in every chapter, as well as a separate solutions manual. It is designed to satisfy the growing demands of undergraduate and graduate students, researchers, and professionals in the fields of nano- and microengineering, and to enable them to contribute to the nanotechnology revolution.

Fundamentals of Microelectromechanical Systems MEMS

Fundamentals of Microelectromechanical Systems  MEMS
Author: Eun Sok Kim
Publsiher: McGraw Hill Professional
Total Pages: 415
Release: 2021-05-14
Genre: Technology & Engineering
ISBN: 9781264257591

Download Fundamentals of Microelectromechanical Systems MEMS Book in PDF, Epub and Kindle

A complete guide to MEMS engineering, fabrication, and applications This comprehensive engineering guide shows, step by step, how to incorporate cutting-edge microelectromechanical (MEMS) technology to enable internet-of-things (IoT) and artificial intelligence (AI) functionality in your designs. Written by an experienced educator and microelectronics expert, Fundamentals of Microelectromechanical Systems (MEMS) clearly explains the latest technologies and methods. Real-world examples, illustrations, and in-depth questions and problems reinforce key topics throughout. Readers will also take a look at the future of MEMS in the workforce and explore MEMS research and development. Coverage includes: Basic microfabrication Micromachining Transduction principles RF and optical MEMS Mechanics and inertial sensors Thin film properties and SAW/BAW sensors Pressure sensors and microphones Piezoelectric films Material properties expressed as tensor Microfluidic systems and BioMEMS Power MEMS Electronic noises, interface circuits, and oscillators