Rational Design of Solar Cells for Efficient Solar Energy Conversion

Rational Design of Solar Cells for Efficient Solar Energy Conversion
Author: Alagarsamy Pandikumar,Ramasamy Ramaraj
Publsiher: John Wiley & Sons
Total Pages: 400
Release: 2018-08-31
Genre: Science
ISBN: 9781119437468

Download Rational Design of Solar Cells for Efficient Solar Energy Conversion Book in PDF, Epub and Kindle

An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.

Rational Design of Solar Cells for Efficient Solar Energy Conversion

Rational Design of Solar Cells for Efficient Solar Energy Conversion
Author: Alagarsamy Pandikumar,Ramasamy Ramaraj
Publsiher: John Wiley & Sons
Total Pages: 396
Release: 2018-10-09
Genre: Science
ISBN: 9781119437406

Download Rational Design of Solar Cells for Efficient Solar Energy Conversion Book in PDF, Epub and Kindle

An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.

Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design
Author: Inamuddin,Mohd Imran Ahamed,Rajender Boddula,Mashallah Rezakazemi
Publsiher: John Wiley & Sons
Total Pages: 578
Release: 2021-07-30
Genre: Science
ISBN: 9781119725046

Download Fundamentals of Solar Cell Design Book in PDF, Epub and Kindle

Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of solar cells and explores the history of evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and other fundamentals of solar cell design. Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvested energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for its notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, and economy friendly and operational costs. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization, analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents. This outstanding new volume: Provides state-of-the-art information about solar cells Is a unique reference guide for researchers in solar energy Includes novel innovations in the field of solar cell technology Audience: This book is a unique reference guide that can be used by faculty, students, researchers, engineers, device designers and industrialists who are working and learning in the fields of semiconductors, chemistry, physics, electronics, light science, material science, flexible energy conversion, industrial, and renewable energy sectors..

Solar Cell Array Design Handbook

Solar Cell Array Design Handbook
Author: Hans S. Rauschenbach
Publsiher: Springer Science & Business Media
Total Pages: 560
Release: 2012-12-06
Genre: Science
ISBN: 9789401179157

Download Solar Cell Array Design Handbook Book in PDF, Epub and Kindle

Materials for Solar Energy Conversion

Materials for Solar Energy Conversion
Author: R. Rajasekar,C. Moganapriya,A. Mohankumar
Publsiher: John Wiley & Sons
Total Pages: 400
Release: 2021-10-26
Genre: Technology & Engineering
ISBN: 9781119752172

Download Materials for Solar Energy Conversion Book in PDF, Epub and Kindle

MATERIALS FOR SOLAR ENERGY CONVERSION This book provides professionals and students with a resource on the basic principles and applications of solar energy materials and processes, as well as practicing engineers who want to understand how functional materials operate in solar energy conversion systems. The demand for energy is increasing daily, and the development of sustainable power generation is a critical issue. In order to overcome the energy demand, power generation through solar energy is booming. Many research works have attempted to enhance the efficiency of collection and storage of solar energy and, as a result, numerous advanced functional materials have been developed for enhancing the performance of solar cells. This book has compiled and broadly explores the latest developments of materials, methods, and applications of solar energy. The book is divided into 2 parts, in which the first part deals with solar cell fundamentals and emerging categories, and the latter part deals with materials, methods, and applications in order to fill the gap between existing technologies and practical requirements. The book presents detailed chapters including organic, inorganic, coating materials, and collectors. The use of modern computer simulation techniques, conversion and storage processes are effectively covered. Topics such as nanostructured solar cells, battery materials, etc. are included in this book as well. Audience The book is aimed at researchers in materials science, chemistry, physics, electrical and mechanical engineering working in the fields of nanotechnology, photovoltaic device technology, and solar energy.

Solar Cells

Solar Cells
Author: Ahmed Mourtada Elseman
Publsiher: BoD – Books on Demand
Total Pages: 489
Release: 2021-09-22
Genre: Technology & Engineering
ISBN: 9781838810160

Download Solar Cells Book in PDF, Epub and Kindle

Solar cell energy is the single most pressing issue facing humanity, with a more technologically advanced society requiring better energy resources. This book discusses technologies broadly, depending on how they capture and distribute solar energy or convert it into solar power. The major areas covered in this book are: • The theory of solar cells, which explains the conversion of light energy in photons into electric current. The theoretical studies are practical because they predict the fundamental limits of a solar cell. • The design and development of thin-film technology-based solar cells. • State of the art for bulk material applied for solar cells based on crystalline silicon (c-Si), also known as “solar grade silicon,” and emerging photovoltaics.

Development of Solar Cells

Development of Solar Cells
Author: Juganta K. Roy,Supratik Kar,Jerzy Leszczynski
Publsiher: Springer Nature
Total Pages: 235
Release: 2021-05-12
Genre: Science
ISBN: 9783030694456

Download Development of Solar Cells Book in PDF, Epub and Kindle

This book presents a comprehensive overview of the fundamental concept, design, working protocols, and diverse photo-chemicals aspects of different solar cell systems with promising prospects, using computational and experimental techniques. It presents and demonstrates the art of designing and developing various solar cell systems through practical examples. Compared to most existing books in the market, which usually analyze existing solar cell approaches this volume provides a more comprehensive view on the field. Thus, it offers an in-depth discussion of the basic concepts of solar cell design and their development, leading to higher power conversion efficiencies. The book will appeal to readers who are interested in both fundamental and application-oriented research while it will also be an excellent tool for graduates, researchers, and professionals working in the field of photovoltaics and solar cell systems.

Solar Cells

Solar Cells
Author: Leonid A. Kosyachenko
Publsiher: BoD – Books on Demand
Total Pages: 400
Release: 2015-10-22
Genre: Technology & Engineering
ISBN: 9789535121848

Download Solar Cells Book in PDF, Epub and Kindle

This book contains chapters in which the problems of modern photovoltaics are considered. The majority of the chapters provide an overview of the results of research and development of different types of solar cells. Such chapters are completed by a justification for a new solar cell structure and technology. Of course, highly effective solar energy conversion is impossible without an in-depth examination of the solar cell components as physical materials. The relations between structural, thermodynamic, and optical properties of the physical material without addressing the band theory of solids are of both theoretical and practical interest. Requirements formulated for the material are also to be used for maximally efficient conversion of solar radiation into useful work.