Robust Discrete Time Flight Control of UAV with External Disturbances

Robust Discrete Time Flight Control of UAV with External Disturbances
Author: Shuyi Shao,Mou Chen,Peng Shi
Publsiher: Springer Nature
Total Pages: 207
Release: 2020-09-26
Genre: Technology & Engineering
ISBN: 9783030579579

Download Robust Discrete Time Flight Control of UAV with External Disturbances Book in PDF, Epub and Kindle

This book studies selected discrete-time flight control schemes for fixed-wing unmanned aerial vehicle (UAV) systems in the presence of system uncertainties, external disturbances and input saturation. The main contributions of this book for UAV systems are as follows: (i) the proposed integer-order discrete-time control schemes are based on the designed discrete-time disturbance observers (DTDOs) and the neural network (NN); and (ii) the fractional-order discrete-time control schemes are developed by using the fractional-order calculus theory, the NN and the DTDOs. The book offers readers a good understanding of how to establish discrete-time tracking control schemes for fixed-wing UAV systems subject to system uncertainties, external wind disturbances and input saturation. It represents a valuable reference guide for academic research on uncertain UAV systems, and can also support advanced / Ph.D. studies on control theory and engineering.

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle
Author: Moussa Labbadi,Yassine Boukal,Mohamed Cherkaoui
Publsiher: Springer Nature
Total Pages: 263
Release: 2021-09-14
Genre: Technology & Engineering
ISBN: 9783030810146

Download Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle Book in PDF, Epub and Kindle

This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.

Fault tolerant Flight Control and Guidance Systems

Fault tolerant Flight Control and Guidance Systems
Author: Guillaume J. J. Ducard
Publsiher: Springer Science & Business Media
Total Pages: 268
Release: 2009-05-14
Genre: Technology & Engineering
ISBN: 9781848825611

Download Fault tolerant Flight Control and Guidance Systems Book in PDF, Epub and Kindle

This book offers a complete overview of fault-tolerant flight control techniques. Discussion covers the necessary equations for the modeling of small UAVs, a complete system based on extended Kalman filters, and a nonlinear flight control and guidance system.

Robust Formation Control for Multiple Unmanned Aerial Vehicles

Robust Formation Control for Multiple Unmanned Aerial Vehicles
Author: Hao Liu,Deyuan Liu,Yan Wan,Kimon Valavanis,Frank Lewis
Publsiher: CRC Press
Total Pages: 145
Release: 2022-12-01
Genre: Technology & Engineering
ISBN: 9781000788501

Download Robust Formation Control for Multiple Unmanned Aerial Vehicles Book in PDF, Epub and Kindle

This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.

Adaptive Hybrid Control of Quadrotor Drones

Adaptive Hybrid Control of Quadrotor Drones
Author: Nihal Dalwadi,Dipankar Deb,Stepan Ozana
Publsiher: Springer Nature
Total Pages: 188
Release: 2023-03-01
Genre: Technology & Engineering
ISBN: 9789811997440

Download Adaptive Hybrid Control of Quadrotor Drones Book in PDF, Epub and Kindle

This book discusses the dynamics of a tail-sitter quadrotor and biplane quadrotor-type hybrid unmanned aerial vehicles (UAVs) and, based on it, various nonlinear controllers design like backstepping control (BSC), ITSMC (Integral Terminal Sliding Mode Control), and hybrid controller (BSC + ITSMC). It discusses single and multiple observer-based control strategies to handle external disturbances like wind gusts and estimate states. It covers the dynamics of slung load with a biplane quadrotor and a control architecture to handle the effect of partial rotor failure with wind gusts acting on it. An anti-swing control to prevent damage to the slung load and a deflecting surface-based total rotor failure compensation strategy to prevent damage to the biplane quadrotor are also discussed in this book. The monograph will be helpful for undergraduate and post-graduate students as well as researchers in their advanced studies.

Robust Formation Control for Multiple Unmanned Aerial Vehicles

Robust Formation Control for Multiple Unmanned Aerial Vehicles
Author: Hao Liu (Of Beijing hang kong hang tian da xue)
Publsiher: Unknown
Total Pages: 0
Release: 2023
Genre: Drone aircraft
ISBN: 1032150246

Download Robust Formation Control for Multiple Unmanned Aerial Vehicles Book in PDF, Epub and Kindle

"This book is based on the authors' recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled, parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems."--

Fault Tolerant Cooperative Control of Unmanned Aerial Vehicles

Fault Tolerant Cooperative Control of Unmanned Aerial Vehicles
Author: Ziquan Yu,Youmin Zhang,Bin Jiang,Chun-Yi Su
Publsiher: Springer Nature
Total Pages: 226
Release: 2023-12-06
Genre: Technology & Engineering
ISBN: 9789819976614

Download Fault Tolerant Cooperative Control of Unmanned Aerial Vehicles Book in PDF, Epub and Kindle

This book focuses on the fault-tolerant cooperative control (FTCC) of multiple unmanned aerial vehicles (multi-UAVs). It provides systematic and comprehensive descriptions of FTCC issues in multi-UAVs concerning faults, external disturbances, strongly unknown nonlinearities, and input saturation. Further, it addresses FTCC design from longitudinal motions to attitude motions, and outer-loop position motions of multi-UAVs. The book’s detailed control schemes can be used to enhance the flight safety of multi-UAVs. As such, the book offers readers an in-depth understanding of UAV safety in cooperative/formation flight and corresponding design methods. The FTCC methods presented here can also provide guidelines for engineers to improve the safety of aerospace engineering systems. The book offers a valuable asset for scientists and researchers, aerospace engineers, control engineers, lecturers and teachers, and graduates and undergraduates in the system and control community, especially those working in the field of UAV cooperation and multi-agent systems.

Design of Control Laws and State Observers for Fixed Wing UAVs

Design of Control Laws and State Observers for Fixed Wing UAVs
Author: Arturo Tadeo Espinoza-Fraire,Alejandro Enrique Dzul López,Ricardo Pavel Parada Morado,José Armando Sáenz Esqueda
Publsiher: Elsevier
Total Pages: 292
Release: 2022-09-29
Genre: Technology & Engineering
ISBN: 9780323954044

Download Design of Control Laws and State Observers for Fixed Wing UAVs Book in PDF, Epub and Kindle

Design of Control Laws and State Observers for Fixed-Wing UAVs: Simulation and Experimental Approaches provides readers with modeling techniques, simulations, and results from real-time experiments using linear and nonlinear controllers and state observers. The book starts with an overview of the history of UAVs and the equations of motion applied to them. Following chapters analyze linear and nonlinear controllers, state observers, and the book concludes with a chapter discussing testbed development and experimental results, equipping readers with the knowledge they need to conduct their own stable UAV flights whether in simulation or real-time. Presents aerodynamic models for fixed-wing UAVs that can be used to design control laws and state observers Applies linear and nonlinear control theories and state observers to fixed-wing UAVs Provides real-time flight and simulation test results of fixed-wing UAVs with linear and nonlinear controllers