Source Separation and Decentralization for Wastewater Management

Source Separation and Decentralization for Wastewater Management
Author: Tove A. Larsen,Kai M. Udert,Judit Lienert
Publsiher: IWA Publishing
Total Pages: 502
Release: 2013-02-01
Genre: Science
ISBN: 9781843393481

Download Source Separation and Decentralization for Wastewater Management Book in PDF, Epub and Kindle

Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group

Sewage Management

Sewage Management
Author: Anonim
Publsiher: BoD – Books on Demand
Total Pages: 280
Release: 2023-05-17
Genre: Technology & Engineering
ISBN: 9781837685356

Download Sewage Management Book in PDF, Epub and Kindle

Sewage management refers to the process of collecting, treating, and disposing of the millions of gallons of wastewater produced daily by households, industries, and commercial establishments. It is vital to treat and dispose of this wastewater appropriately to safeguard public health and the environment. The objective of sewage management is to decrease the number of pollutants in wastewater before it is discharged into water bodies or reused for other purposes. Sewage management is a crucial element of modern society, yet it is frequently disregarded or taken for granted. This book offers a comprehensive overview of the various aspects of sewage management, covering the basics of wastewater treatment and disposal, and the various technologies and processes involved in sewage treatment. Additionally, the book provides case studies of successful sewage management practices from around the world, highlighting best practices and innovative solutions. It is hoped that this e-book will serve as a valuable resource for anyone seeking to better understand this critical aspect of modern society.

Onsite Wastewater Treatment Systems Manual

Onsite Wastewater Treatment Systems Manual
Author: Anonim
Publsiher: Unknown
Total Pages: 378
Release: 2002
Genre: Sewage
ISBN: UOM:39015055169752

Download Onsite Wastewater Treatment Systems Manual Book in PDF, Epub and Kindle

"This manual contains overview information on treatment technologies, installation practices, and past performance."--Introduction.

Co treatment of Septage and Faecal Sludge in Sewage Treatment Facilities

Co treatment of Septage and Faecal Sludge in Sewage Treatment Facilities
Author: Dorai Narayana
Publsiher: IWA Publishing
Total Pages: 233
Release: 2020-04-15
Genre: Science
ISBN: 9781789061260

Download Co treatment of Septage and Faecal Sludge in Sewage Treatment Facilities Book in PDF, Epub and Kindle

Over the past few years on-site sanitation has been widely promoted as a solution which can be quickly implemented to address sanitation issues, and it is gaining traction. As such, treatment of the contents emptied from on-site containments has become a pressing issue. While dedicated treatment facilities for this purpose have been advocated, co-treating these wastes in sewage treatment facilities is a promising option, which many countries have implemented or are exploring. This option maximises the utilisation of city infrastructure. In cases where the existing sewage treatment facilities are underutilised, co-treatment presents a ready solution for managing fecal sludge and septage. In spite of co-treatment being a well-known practice in many countries, it remains clouded in uncertainty, especially regarding the technical advisability, and potential risks of co-treating fecal sludge or septage in sewage treatment plants. Planners and decision-makers are often very apprehensive in considering co-treatment. As a result, the opportunity to better utilise available infrastructure for co-treatment of sludge is often being missed. Meanwhile, there are also many cases where co-treatment has been tried, either successfully or otherwise, but it has not been possible to draw conclusions from these, to guide the way forward. This guide book explores some of the basic principles behind sewage treatment, and how it may be impacted by co-treatment of wastes from on-site containments, to try to throw some light on how co-treatment could be considered, in an incremental manner, recognising risks and mitigating them. It is intended to facilitate a better understanding among planners, engineers, decision makers and technical practitioners and to help them evaluate and consider the option of co-treatment.

Municipal Wastewater Management in Developing Countries

Municipal Wastewater Management in Developing Countries
Author: Zaini Ujang,Mogens Henze
Publsiher: IWA Publishing
Total Pages: 364
Release: 2006-04-30
Genre: Science
ISBN: 9781843390305

Download Municipal Wastewater Management in Developing Countries Book in PDF, Epub and Kindle

Municipal Wastewater Management in Developing Countries discusses various approaches to municipal wastewater management in order to protect both public health and the environment, with the major focus being on waterborne diseases. Developing countries can be divided into two main categories, i.e. countries in transition with higher growth rates where industrialisation and urbanisation are taking place rapidly, and countries with slower growth rates. It is important, therefore, that approaches should be tailor-made and site-specific. In general, the major trends of water pollution control have significantly contributed to the development of ?conventional sanitation? approaches in terms of legal and financial frameworks, as well as technological enhancement. Despite advances in the science, engineering and legal frameworks, 95 per cent of the wastewater in the world is released into the environment without treatment. Only five per cent of global wastewater is properly treated using the ?standard? sanitation facilities, mainly in developed countries. As a result, the majority of the world?s population is still exposed to waterborne diseases, and the quality of water resources has been rapidly degraded, particularly in poor developing countries. The challenge now is to provide the world?s population, especially the poor, with adequate water and sanitation facilities. Despite billions of dollars of investment spent every year, billions of poor people are still suffering and dying because of poor sanitation. At the beginning of this century, about 1.1 billion people lived without access to clean water (compared to about the same number in 1990), 2.4 billion without appropriate sanitation (compared to 2.3 billion in 1990) and four billion without sound wastewater disposal. The future scenario, that water resources will be further depleted by a growing world population, will be coupled with environmental degradation due to poor pollution control, particularly in most of the developing countries. In order to address the issue of water and wastewater management in developing countries it is necessary to take into consideration the segments of the society itself, particularly the types of housing areas. The segments will indicate the level of socio-economic, mentality and knowledge, which is important for any planned changes in their life style and social engineering. It is also important to segregate the funding framework of any proposed projects. High-income urban communities, for instance, are generally willing to pay for sewerage services and higher water supply tariffs, therefore a designated system can be accordingly provided. Over the past 10 years, serious criticism has been given to the ?conventional sanitation? approach, consequently many definitions, concepts and characteristics have been proposed on ?sustainable sanitation?. Sustainable sanitation is a relevant concept in order to achieve the Millennium Development Goals by 2015 of providing water supply and adequate sanitation for developing countries. Sustainable sanitation is flexible in approach any community ? poor or rich, urban or rural, water-rich or water-poor country ? and requires lower investment costs compared to conventional sanitation approaches. It is also important to note that the framework of sustainable sanitation is much easier to adopt in developing countries where water supply and sanitation infrastructures are still in the developing stages. In some developing countries, no public facilities are available therefore it is an ideal condition to start a new infrastructure with a new framework. This comprehensive reference, prepared by leading international authorities, will provide an invaluable reference for all those concerned with the management of sanitation services in developing countries worldwide.

Membrane Technology for Water and Wastewater Treatment in Rural Regions

Membrane Technology for Water and Wastewater Treatment in Rural Regions
Author: Rosalam Sarbatly
Publsiher: Unknown
Total Pages: 376
Release: 2020
Genre: Technology & Engineering
ISBN: 1799826457

Download Membrane Technology for Water and Wastewater Treatment in Rural Regions Book in PDF, Epub and Kindle

As a basic human need, water and its treatment are of the utmost importance. However, some rural areas are disadvantaged and have difficulty in effectively treating their water supply, which can affect the health and safety of their region. To protect and defend citizens, research must supply effective and applicable methods in securing the safety and drinkability of water. Membrane Technology for Water and Wastewater Treatment in Rural Regions is an essential publication that discusses the fabrication and characterization of membranes, processes and operations, and specific applications of membranes on water and wastewater treatment. Moreover, the book discusses selected promising aspects of membrane usage in the industry with a focus on palm oil mill industry, sewage management and treatment, and water treatment in rural areas. Featuring coverage on a broad range of topics including membrane processes, water production, and transport resistances, this book is ideally designed for engineers, chemists, environmentalists, public officials, researchers, academicians, students, and industry professionals.

Wastewater Treatment and Waste Management

Wastewater Treatment and Waste Management
Author: Vijay P. Singh,Ram Narayan Yadava
Publsiher: Allied Publishers
Total Pages: 452
Release: 2003
Genre: Groundwater
ISBN: 8177645447

Download Wastewater Treatment and Waste Management Book in PDF, Epub and Kindle

Design Manual

Design Manual
Author: Anonim
Publsiher: Unknown
Total Pages: 412
Release: 1980
Genre: Septic tanks
ISBN: UOM:39015042095177

Download Design Manual Book in PDF, Epub and Kindle