Single Neuron Computation

Single Neuron Computation
Author: Thomas M. McKenna,Joel L. Davis,Steven F. Zornetzer
Publsiher: Academic Press
Total Pages: 644
Release: 2014-05-19
Genre: Computers
ISBN: 9781483296067

Download Single Neuron Computation Book in PDF, Epub and Kindle

This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real neurons is essential to the design of enhanced processor elements for use in the next generation of ANNs. The book covers computation in dendrites and spines, computational aspects of ion channels, synapses, patterned discharge and multistate neurons, and stochastic models of neuron dynamics. It is the most up-to-date presentation of biophysical and computational methods.

Neuronal Dynamics

Neuronal Dynamics
Author: Wulfram Gerstner,Werner M. Kistler,Richard Naud,Liam Paninski
Publsiher: Cambridge University Press
Total Pages: 591
Release: 2014-07-24
Genre: Computers
ISBN: 9781107060838

Download Neuronal Dynamics Book in PDF, Epub and Kindle

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Biophysics of Computation

Biophysics of Computation
Author: Christof Koch
Publsiher: Oxford University Press
Total Pages: 587
Release: 2004-10-28
Genre: Medical
ISBN: 9780195181999

Download Biophysics of Computation Book in PDF, Epub and Kindle

Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Biophysics of Computation

Biophysics of Computation
Author: Christof Koch
Publsiher: Oxford University Press
Total Pages: 588
Release: 2004-10-28
Genre: Medical
ISBN: 9780190292850

Download Biophysics of Computation Book in PDF, Epub and Kindle

Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes. Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation. Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Single Neuron Computation in Vivo

Single Neuron Computation in Vivo
Author: Lea Goetz
Publsiher: Unknown
Total Pages: 0
Release: 2018
Genre: Electronic Book
ISBN: OCLC:1167130854

Download Single Neuron Computation in Vivo Book in PDF, Epub and Kindle

Spiking Neuron Models

Spiking Neuron Models
Author: Wulfram Gerstner,Werner M. Kistler
Publsiher: Cambridge University Press
Total Pages: 498
Release: 2002-08-15
Genre: Computers
ISBN: 0521890799

Download Spiking Neuron Models Book in PDF, Epub and Kindle

This is an introduction to spiking neurons for advanced undergraduate or graduate students. It can be used with courses in computational neuroscience, theoretical biology, neural modeling, biophysics, or neural networks. It focuses on phenomenological approaches rather than detailed models in order to provide the reader with a conceptual framework. No prior knowledge beyond undergraduate mathematics is necessary to follow the book. Thus it should appeal to students or researchers in physics, mathematics, or computer science interested in biology; moreover it will also be useful for biologists working in mathematical modeling.

Space Time Computing with Temporal Neural Networks

Space Time Computing with Temporal Neural Networks
Author: James E. Smith
Publsiher: Morgan & Claypool Publishers
Total Pages: 245
Release: 2017-05-18
Genre: Computers
ISBN: 9781627058902

Download Space Time Computing with Temporal Neural Networks Book in PDF, Epub and Kindle

Understanding and implementing the brain's computational paradigm is the one true grand challenge facing computer researchers. Not only are the brain's computational capabilities far beyond those of conventional computers, its energy efficiency is truly remarkable. This book, written from the perspective of a computer designer and targeted at computer researchers, is intended to give both background and lay out a course of action for studying the brain's computational paradigm. It contains a mix of concepts and ideas drawn from computational neuroscience, combined with those of the author. As background, relevant biological features are described in terms of their computational and communication properties. The brain's neocortex is constructed of massively interconnected neurons that compute and communicate via voltage spikes, and a strong argument can be made that precise spike timing is an essential element of the paradigm. Drawing from the biological features, a mathematics-based computational paradigm is constructed. The key feature is spiking neurons that perform communication and processing in space-time, with emphasis on time. In these paradigms, time is used as a freely available resource for both communication and computation. Neuron models are first discussed in general, and one is chosen for detailed development. Using the model, single-neuron computation is first explored. Neuron inputs are encoded as spike patterns, and the neuron is trained to identify input pattern similarities. Individual neurons are building blocks for constructing larger ensembles, referred to as "columns". These columns are trained in an unsupervised manner and operate collectively to perform the basic cognitive function of pattern clustering. Similar input patterns are mapped to a much smaller set of similar output patterns, thereby dividing the input patterns into identifiable clusters. Larger cognitive systems are formed by combining columns into a hierarchical architecture. These higher level architectures are the subject of ongoing study, and progress to date is described in detail in later chapters. Simulation plays a major role in model development, and the simulation infrastructure developed by the author is described.

The Theoretical Foundation of Dendritic Function

The Theoretical Foundation of Dendritic Function
Author: Wilfrid Rall
Publsiher: MIT Press
Total Pages: 484
Release: 1995
Genre: Dendrites
ISBN: 0262193566

Download The Theoretical Foundation of Dendritic Function Book in PDF, Epub and Kindle

This collection of fifteen previously published papers, some of them not widely available, have been carefully chosen and annotated by Rall's colleagues and other leading neuroscientists.